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ABSTRACT

After a few decades’ evolution of wireless communication systems, to ensure reliable high-

speed communication over unreliable wireless channels is still one of the major challenges

facing researchers and engineers. The use of multiple antennas at transmitter and receiver,

known as multiple-input multiple-output (MIMO) communications, is one promising technol-

ogy delivering desired wireless services. The main goal of this thesis is to study two important

issues in wireless MIMO communication systems: receiver design for coded MIMO systems,

and diversity-multiplexing tradeoff analysis in general fading channels.

In the first part of this thesis, we decompose the receiver design problem into two sub-

problems: MIMO channel estimation and MIMO detection. For the MIMO channel estimation,

we develop an expectation-maximization (EM) based semi-blind channel and noise covariance

matrix estimation algorithm for space-time coding systems under spatially correlated noise.

By incorporating the proposed channel estimator into the iterative receiver structure, both the

channel estimation and the error-control decoding are improved significantly. We also derive the

modified Cramér-Rao bounds (MCRB) for the unknown parameters as the channel estimation

performance metric, and demonstrate that the proposed channel estimation algorithm can

achieve the MCRB after several iterations. For the MIMO detection, we propose a novel low-

complexity MIMO detection algorithm, which has only cubic order computational complexity,

but with near-optimal performance. For a 4×4 turbo-coded system, we show that the proposed

detector had the same performance as the maximum a posteriori (MAP) detector for BPSK

modulation, and 0.1 dB advantage over the approximated MAP detector (list sphere decoding

algorithm) for 16-QAM modulation at BER = 10−4.

In the second part of this thesis, we derive the optimal diversity-multiplexing tradeoff for
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general MIMO fading channels, which include different fading types as special cases. We show

that for a MIMO system with long coherence time, the optimal diversity-multiplexing tradeoff

is also a piecewise linear function, and only the first segment is affected by different fading

types. We proved that under certain full-rank assumptions spatial correlation has no effect on

the optimal tradeoff. We also argued that non-zero channel means in general are not beneficial

for multiplexing-diversity tradeoff.
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CHAPTER 1. INTRODUCTION

1.1 Overview of wireless MIMO communication systems

High data rate wireless communications is of interests in emerging wireless local area net-

work and next generation wireless systems. Designing high speed communication systems that

can support reliable transmissions over wireless channels constitutes a significant research and

engineering challenge. The use of multiple antennas at transmitter and receiver, commonly

referred to as multiple-input multiple-output (MIMO) communications, is one promising tech-

nology delivering desired wireless services. The seminal work by Foschini and Gans [31] and,

independently, Telatar [102] suggested that MIMO systems have the potential of achieving

remarkable spectral efficiency under “rich” multipath environments. The Bell Labs Layered

Space-Time (BLAST) scheme has demonstrated spectral efficiencies ranging from 20 to 40 bits

per second per Hertz, which is almost impossible with conventional methods [116].

It is well known that, compared with wireline communication systems, one major im-

pairment for wireless communication systems is the complicated time-varying channels with

possibly multi-path fading, shadowing, pass loss, interference, and so on. This may leads to

severe data rate loss or performance degradation, or both. One effective way to combat fading

channel is to use the so-called “diversity” techniques, which means that other replicas of the

transmitted signal must be sent to the receiver in other formats (or through other paths). The

intuition is to take advantage of the low probability of concurrent deep fades in all indepen-

dent paths to lower the probability of error. The commonly used diversity techniques include

temporal diversity, frequency diversity and spatial (antenna) diversity. In many cases, wireless

channel is slow time-varying (no temporary diversity), non-frequency selective (no frequency

diversity), thus spatial diversity is needed to improve the performance. Such spatial diversity
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can be achieved by the use of MIMO systems. For example, the same signal can be transmitted

over NT different transmit antennas, and received by NR receive antennas. Since the signal

goes through NT × NR independent paths, it is possible to achieve the diversity of NT ×NR

by appropriately combining these signals. On the other hand, fading channels may also be

beneficial for a wireless communication system. By increasing the independent fading paths

between the transmitter and receiver, the degrees of freedom of the whole system are increased

as well. If the different degrees of freedom are used to transmit different signals, the total

data rate can be increased significantly. This is why MIMO systems can provide much higher

spectral efficiency than single-antenna systems.

To date, many transmission schemes for MIMO systems have been proposed in the litera-

ture. These schemes may be roughly divided into two categories: space-time coding techniques

and spatial multiplexing schemes. Space-time coding techniques (such as Alamouti’s scheme

[3]) exploit spatial diversity to yield good performance and easy decodability at the expense of

less spectral efficiency. On the other hand, spatial multiplexing schemes like BLAST can pro-

vide spatial-multiplexing gain to enhance the overall data throughput and achieve significant

fractions of the data rate promised in theory. However, the corresponding data detection at

the receiver is much more complicated due to the interferences introduced by MIMO channels.

Combined with strong error-control codes, both of these two schemes can deliver high-rate

data with good performance, provided that the frame length is long enough and good channel

estimation is available at the receiver.

In order to use MIMO communication systems to ensure reliable high-speed information

transmission over unreliable wireless fading channels, there are still many technical issues in

both theoretical analysis and practical design. These issues include, but not limited to, i)

practical issues: transmitter design (such as space-time coding, power and/or rate adapta-

tion), receiver design (such as channel state/statistics estimation and symbol detection), error-

control coding (such as low-density parity-check (LDPC) coding and turbo coding), equal-

ization, feedback from the receiver to transmitter, etc. ii) theoretical issues: MIMO capacity

analysis, error performance analysis, optimal (capacity-achieving) signaling design, diversity-
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multiplexing tradeoff, etc. In what follows, we briefly introduce two issues (one practical and

one theoretical) addressed in this thesis: iterative receiver design for coded MIMO systems

and diversity-multiplexing tradeoff in MIMO fading channels.

1.2 Iterative receiver design for coded MIMO systems

In almost all of modern communication systems, error-control codes are used to improve

the system performance in terms of error probability. Here, we also consider a coded MIMO

system as shown in Fig. 1.1. At the transmitter, the information bit stream u is encoded

to coded bit stream c through error-control encoder, then modulated to vector signal s by

MIMO modulator, and transmitted using multiple transmit antennas. At the receiver, the

received vector signal y from multiple receive antennas is a mixed-version of s due to MIMO

channel matrix H , plus some noise. The optimal way to recover the information bits is to find

the maximum-likelihood estimate of each information bit based on the received data y’s, and

the constraints imposed by the MIMO channel H and the error-control code. However, the

prohibitive computational complexity makes it impossible to implement. The most commonly

used alternative is to separate the detection and the decoding of the coded bits c. Such receiver

structure has two modules: MIMO demodulator and error-control decoder as shown in Fig. 1.1.

Since the MIMO channel matrixH is usually unknown at the receiver, the MIMO demodulator

block includes both channel estimator and MIMO detector.

Figure 1.1 Discrete-time transmitter and receiver structure for coded

MIMO communication systems

Recently there have been increasing interests in iterative receiver design [17, 51, 58, 100].

In an iterative receiver, there are iterations between MIMO demodulator and error-control

decoder, where soft information of coded bits is exchanged between them such that the symbol
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detection and the channel estimation can be refined and ultimately improve decoding perfor-

mance. It has been shown that such “turbo principle” is very effective and computationally

efficient in other joint detection and decoding problems [51, 104]. Since the error-control en-

coder and decoder are relatively standard, we here focus in detail on the MIMO demodulator

design.

In this thesis, we will study the MIMO demodulator design for two different transmission

schemes: space-time coding and spatial multiplexing. For space-time coding scheme, e.g.,

orthogonal space-time codes [101], the MIMO detection is much easier due to the special

structure of space-time codewords at the expense of less spectral efficiency. Thus, we can

assume the optimal MIMO detection, i.e., maximum a posterior (MAP) detector, and design

efficient MIMO channel estimator for space-time coding scheme. For spatial multiplexing

scheme, with much higher spectral efficiency, we can use more redundancy to estimate the

MIMO channel, and still achieve the same data rate as the space-time coding scheme. For

example, more pilot symbols can be inserted into the data transmission without violating

the overall data rate requirement, and improve the MIMO channel estimation significantly.

Therefore, we can assume perfect channel state information, and design low-complexity near-

optimal MIMO detector.

In summary, the iterative receiver design for coded MIMO systems is decoupled into two

sub-problems: MIMO channel estimation and MIMO detection.

1.2.1 MIMO channel estimation

Both space-time coding and spatial multiplexing schemes require channel state information

(CSI) at the receiver for coherent detection, and the performance depends on the quality of

channel estimation. Differential schemes do not require CSI at the receiver, but they usually

suffer a 3 dB loss in SNR when the detection is based on two consecutive received blocks [53].

Therefore, estimation of the MIMO channel is a major challenge for multi-antenna systems.

At the same time, it is also a non-trivial problem because of the large number of parameters

involved and that the parameters have to be estimated within the channel coherence time.
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Existing channel estimation algorithms can be classified as training based algorithms [14,

88, 9], and blind or semi-blind algorithms [107, 39, 20, 63, 77]. For training based channel

estimation, MIMO channels are estimated using only pilot symbols and the corresponding

received signals, and then the estimates are used to detect data symbols. In order to achieve

better channel estimation, more pilot symbols are usually needed which results in rate loss.

On the other hand, blind or semi-blind algorithms utilize the received signals of both pilot

symbols and data symbols to estimate the channel. Inspired by iterative detection and decoding

schemes, most of the state-of-the-art semi-blind channel estimation algorithms are carried

out under the joint channel estimation, detection and decoding framework, since the soft

information of data symbols fed back from the error-control decoder can greatly improve the

channel estimation.

1.2.2 MIMO detection

For spatial multiplexing schemes, we assume that the channel matrix H is perfectly known

at the receiver, then the task of MIMO detectors is to provide the decision (hard or soft) on

transmitted symbols s given the received signal y. Such MIMO detection problem also shows

up in other setups, including the multi-user detection [108], filter banks [106], modulated coding

[117], and multi-carrier CDMA schemes [113]. The solution to the MIMO detection problem

can also offer benefits to designing these systems.

There are two classes of MIMO detectors: hard-decision detectors and soft-decision de-

tectors. The first one is useful for detecting uncoded transmissions, where the decision of

MIMO detectors will be used as final decision. The second one is usually used in coded MIMO

systems, where an iterative detection and decoding scheme needs soft information being ex-

changed between detection and decoding modules following the “turbo principle”, see e.g., [49].

Since soft information can be fed back from the error-control decoder to the MIMO detector,

soft-decision detectors often incorporates a priori information on symbols in s into detector

design.

Among hard-decision detectors, the maximum-likelihood (ML) detector is optimum, which
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is equivalent to finding the closest lattice point to the given received vector y in the space of all

possible symbol vectors. Denoting the alphabet size of the scalar constellation transmitted from

each antenna by M , the ML detector needs to search over a total of MNT vectors rendering the

complexity exponential in the number of transmit antennas. It is prohibitive even for moderate

systems, e.g., NT = 6 with QPSK modulation. Existing sub-optimal hard-decision detectors

include zero-forcing or decorrelating detectors, linear minimum mean square-error (MMSE)

detectors [79], successive interference cancellation with iterative least squares [64], multistage

cancellation [108], and BLAST nulling/cancelling [116, 47]. They have total complexity in

the order of O(N2
T ) to O(N3

T ), but there is usually a significant performance gap from the ML

detector. Sphere decoding [29, 80, 110, 48] has near-optimal performance but with complexities

higher than the cubic order, especially for moderate systems (e.g., NT ≤ 10).

For soft-decision detection, the optimal detector is MAP detector, which can output the soft

information on transmitted symbols or the underlying coded bits. However, the computational

complexity of MAP detector is the same as that of the ML detector, which limits its practical

application. Some sub-optimal soft-decision detectors have been proposed in the literature,

e.g., parallel soft interference cancellation [17], soft interference cancellation with linear MMSE

filtering [111], and BLAST nulling/cancelling with prior information [119]. Although they

have low complexity at cubic to biquadratic order, none of them can achieve near-optimal

performance at the medium frame length. List sphere decoding [51] and iterative tree search

detection [21] have near-optimal performance at the expense of much higher complexities than

those sub-optimal algorithms.

1.3 Diversity-multiplexing tradeoff in MIMO fading channels

As explained in Section 1.1, MIMO systems can be configured to provide spatial diversity by

transmitting the same symbol through different antennas, or increase the total transmission

rate by transmitting independent information streams through different antennas. Can we

achieve both of these two advantages simultaneously?

While traditional design focused on maximizing either the spatial diversity or the transmis-
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sion rate, Zheng and Tse gave a novel asymptotic view of MIMO systems in their seminal work

[124] by considering them jointly, and answered the previous question. Their result shows that

both of the two advantages mentioned above can be achieved simultaneously, but there is a

tradeoff between them. In other words, having more spatial diversity results in less transmis-

sion rate, and vice versa. From a diversity-multiplexing tradeoff (DMT)’s point of view, we say

a coding (transmission) scheme has a spatial multiplexing gain r and a diversity gain d, if the

transmission rate scales like r log SNR and the average error probability decays like SNR−d.

The essential result of the paper is the characterization of the optimal diversity-multiplexing

tradeoff for a MIMO system under independent and identically distributed (i.i.d) Rayleigh

fading channel. It was proved that the optimal diversity gain d(r) is a simple piecewise linear

function of multiplexing gain r.

Following similar ideas, optimal tradeoff curves have been calculated in different scenarios.

For example, the DMT for the non-coherent MIMO channel is considered in [122]. The tradeoff

result in multiple-access channels is obtained in [103]. In [120], the authors derived the DMT

for cooperative wireless systems. The DMT result for multi-access relay channels is provided

in [15]. To determine which point of the optimal DMT curve a MIMO system should operate

on, the authors of [52] considered an additional end-to-end distortion constraint. Inner and

outer bounds are derived for the DMT of a 2 × 2 broadcast/multiple access channel [115].

Popular schemes such as Alamouti, V-BLAST and D-BLAST are evaluated using diversity

and multiplexing tradeoff as a metric in [124]. This kind of tradeoff has been serving as

a new performance benchmark to compare different schemes and evaluate new ones [94, 5].

Meanwhile, the lack of optimality of existing schemes shown by [124] inspires the design of new

MIMO schemes that achieve the optimal tradeoff curve [32].

1.4 Problem formulations and main results

In this section, we motivate the specific problems we wish to address, briefly describe the

approaches, informally present our main results, and summarize the contributions.

In the first part of this thesis, we focus on the iterative receiver design for coded MIMO
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systems. Two different transmission schemes are considered here: space-time coding and

spatial multiplexing. For the space-time coding scheme, the MIMO detection is relatively easy

due to the special structure of space-time codes. For example, with orthogonal space-time

codes, different symbols can be detected separately with optimal detector. Thus, we assume

that the MAP detector is employed, and the iterative receiver design is boiled down to MIMO

channel estimator design.

Problem 1. Find an efficient semi-blind MIMO channel estimator for space-time coding

systems under unknown spatially correlated noise.

Since the channel information is required at the MIMO detection module for coherent de-

tection, an accurate channel estimation plays an important role in MIMO receiver design. We

consider a space-time coding system with iterative receiver structure. The additive noise is

assumed to be spatially correlated, which can model the co-channel interference. Within the it-

erative receiver structure (c.f. Fig. 1.1), the MIMO detector is MAP detector, and error-control

decoder is standard soft-input soft-output decoder (e.g., LDPC decoder or turbo decoder). Our

goal is to design the MIMO channel estimator to estimate both the channel matrix and the

noise covariance matrix.

The main approach we apply is based on expectation-maximization (EM) algorithm, which

is a general iterative method for computing ML estimates in the scenarios where ML algorithm

cannot be easily performed. Our results state as follows. We develop an EM-based semi-blind

channel and noise covariance matrix estimation algorithm. By incorporating the proposed

channel estimator into the iterative receiver structure, the accuracy of channel estimation is

improved significantly, and can achieve the theoretical bounds (modified Cramér-Rao bounds)

after several iterations. In terms of error rate performance, after several iterations, we can

reach the same performance as the ideal coherent scenario, where the channel is assumed to

be perfectly known at the receiver. For such a spatially correlated noise scenario, simulation

results show that estimation algorithms assuming white noise have much worse performance

than the one of the proposed algorithm.

The contributions of this work could be summarized as: 1) proposing an efficient semi-
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blind channel and noise estimation algorithm for space-time coding systems under spatially

correlated noise; 2) deriving the modified Cramér-Rao bounds for the unknown parameters;

and 3) demonstrating the importance of taking into account spatial correlation of the noise

when the noise is spatially correlated. Part of this work can be found in [23, 72].

For the spatial-multiplexing transmission schemes, the spectral efficiency can be much

higher than the space-time coding schemes. With the same total data rate as the space-

time coding systems, spatial multiplexing schemes can exploit more training symbols to get

more accurate channel estimation. Therefore, when we design the iterative receiver for spatial

multiplexing systems, we assume that the channel state information is perfectly known at the

receiver, and the remaining problem is how to design a good MIMO detector.

Problem 2. Design a low-complexity near-optimal MIMO detection algorithm for spatial

multiplexing systems.

It has been shown in [51] that spatial multiplexing combined with strong error-control

codes can achieve near-capacity on MIMO systems with perfect channel estimation at the re-

ceiver. But the success of such iterative receiver structure requires a good MIMO detection

module. Provided that the perfect CSI is available at the receiver, MAP detection is optimum

but with exponential complexity, which is prohibitive for large systems (many antennas or

large constellation size). Existing sub-optimal detection algorithms include zero-forcing, min-

imum mean-square error, nulling/cancelling, successive or parallel interference cancellation,

and sphere decoding algorithms. But these sub-optimal algorithms either have high complex-

ity (biquadratic-order or higher), or do not produce soft information, or have far-from-optimum

performance. Our goal is to design a low-complexity MIMO detection algorithm with near-

optimal performance.

The approach used in our design is to incorporate the prior information of the transmitted

symbol provided by error-control decoder into the BLAST nulling/cancelling algorithm, which

leads to the following results to Problem 2. We propose a novel low-complexity MIMO detection

algorithm, namely ordered successive softer interference cancellation (OSSIC), which has only

cubic-order computational complexity. For a 4× 4 turbo-coded system, the proposed detector
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has the same performance as the MAP detector for BPSK modulation, and 0.1 dB advantage

over the approximated MAP detector (list sphere decoding algorithm) for 16-QAM modulation

at BER = 10−4.

Our novelties and contributions of this work are: 1) incorporating the prior information

from error-control decoder into the original nulling/cancelling algorithm, and making nulling,

cancelling and ordering steps a posteriori probabilities (APP) based; 2) developing a “square-

root” algorithm to reduce the complexity of the proposed detector to the cubic order; 3)

achieving near-optimal performance with much lower complexity than the optimal detector.

Part of this work is published in [71].

In the second part of this thesis, we discuss another theoretical issue in MIMO communi-

cation systems: diversity-multiplexing tradeoff in MIMO fading channels. In Zheng and Tse’s

work [124], the optimal diversity-multiplexing tradeoff is characterized by a simple piecewise

linear function for i.i.d Rayleigh fading channels. In practical MIMO communication scenarios,

there exist many channel conditions that cannot be accurately modeled as i.i.d Rayleigh fad-

ing. Our question then is, can we extend Zheng and Tse’s results to a general fading channel

condition? Such question leads us to the third problem to be addressed in this thesis.

Problem 3. Characterize the optimal diversity-multiplexing tradeoff in general fading chan-

nels.

Our technique for this generalization is based on the intuition that the optimal tradeoff

performance is determined by the joint probability density function (pdf) of the eigenvalues

of the Gram matrix of the MIMO channel, especially the eigenvalue behavior near zeros. The

main results of this work are as follows. We derive the optimal diversity-multiplexing tradeoff

for general MIMO fading channels, which include different fading types as special cases. We

show that for a MIMO system with long coherence time, the optimal diversity-multiplexing

tradeoff is also a piecewise linear function, and only the first segment is affected by different

fading types. We proved that under certain full-rank assumptions spatial correlation has no

effect on the the optimal tradeoff. We also argued that non-zero channel means in general are

not beneficial for diversity-multiplexing tradeoff.
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Our main contribution is that, the answers to Problem 3 can facilitate a more compre-

hensive understanding of the limiting performance of MIMO systems under generalized fading

conditions. The techniques we developed can also be used to analyze the diversity-multiplexing

tradeoff in multiple-access and broadcast channels. The results of this work have been reported

in [123].

The rest of the thesis is organized as follows: Chapter 2 presents an EM-based channel

and noise estimation algorithm for uncoded single-input multiple-output (SIMO) systems,

which is extended to coded MIMO systems under spatially correlated noise in Chapter 3. In

Chapter 4, we propose a low-complexity near-optimal MIMO detection algorithm for coded

MIMO systems. Chapter 5 discusses the optimal diversity-multiplexing tradeoff in general

MIMO fading channels. At last, Chapter 6 concludes the thesis and point out some directions

for future work. For completeness, another two projects that were done during my Ph.D.

study, asymptotic performance analysis for cooperative diversity system [70], and lifetime

study for wireless sensor networks [68, 69], are also presented in Appendix A and Appendix B,

respectively.
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CHAPTER 2. MAXIMUM LIKELIHOOD CHANNEL AND NOISE

ESTIMATION FOR UNCODED SIMO SYSTEMS

2.1 Introduction

Expectation-maximization (EM) and related algorithms (see [22, 73, 66]) have been applied

to carrier phase recovery [76], demodulation for unknown carrier phase [83], timing estimation

[34], and channel estimation [55]–[19] in single-input single-output (SISO) communication sys-

tems, and, more recently, to symbol detection [65]–[20] and channel estimation [4] in smart

antenna systems. In this chapter, we present an EM algorithm for semi-blind ML estimation of

both the channel and spatial noise covariance matrices in a single-input multi-output (SIMO)

smart antenna scenario. The proposed algorithm can also be used to estimate multipath chan-

nels in unknown colored noise. This is unlike previous work in [55, 19, 4], where EM algorithms

were applied to SISO and multi-input single-output (MISO) channel estimation in white noise.

The signal and noise models are introduced in Section 2.2. In Section 2.3, we derive the

EM algorithm for estimating the unknown channel and noise parameters and in Section 2.4,

we compute modified and estimated Cramér-Rao bounds (CRBs) for these parameters. The

EM channel estimates are incorporated into the receiver design in Section 2.5. In Section 2.6,

we give some numerical examples. We conclude the chapter in Section 2.7.

2.2 Measurement Model

Consider a single-input multi-output (SIMO) flat-fading channel with equiprobable constant-

modulus symbols. Denote by y(t) an nR× 1 data vector (snapshot) received by an array of nR
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antennas at time t and assume that we have collected N snapshots. Under a single-user slow

flat-fading scenario, y(t) can be modeled as

y(t) = h · u(t) + e(t), t = 1, 2, . . . , N, (2.1)

where

• h is an unknown nR × 1 channel response vector;

• u(t) is an unknown symbol received by the array at time t;

• e(t) is temporally white and circularly symmetric zero-mean complex Gaussian noise

vector with unknown positive definite spatial covariance matrix Σ .

The channel h and noise covariance matrix Σ are assumed to be constant for t ∈ {1, 2, . . . , N}.

The spatially correlated noise model accounts for co-channel interference (CCI) and receiver

noise1. We further assume that the symbols u(t) belong to an M -ary constant-modulus con-

stellation

U = {u1, u2, . . . , uM}, (2.2)

where

|um| = 1, m = 1, 2, . . . ,M. (2.3)

[The constant-modulus assumption can be relaxed, see Appendix 2.A.] We model u(t), t =

1, 2, . . . , N as independent, identically distributed (i.i.d.) random variables with probability

mass function

p(u(t)) =
1

M
i(u(t)), (2.4)

where

i(u) =





1, u ∈ {u1, u2, . . . , uM},

0, otherwise
. (2.5)

Our goal is to estimate the unknown channel and noise parameters h and Σ . To allow unique

estimation of the channel h (e.g. to resolve the phase ambiguity), we further assume that NT

1This noise model has been used in numerous recent publications to account for unstructured interference,
see e.g. [26] and references therein.
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known (training) symbols

uT (t) ∈ U , t = 1, 2, . . . , NT , (2.6)

are embedded in the transmission scheme and denote the corresponding snapshots received

by the array as yT (τ), τ = 1, 2, . . . , NT . Then, the measurement model (2.1) holds for the

training symbols as well, with y(t) and u(t) replaced by yT (τ) and uT (τ), respectively.

In the following section, we derive an EM algorithm for computing the ML estimates of h

and Σ under the above measurement model.

2.3 ML Estimation

The EM algorithm is a general iterative method for computing ML estimates in the sce-

narios where ML estimation cannot be easily performed by directly maximizing the likeli-

hood function of observed measurements. Each EM iteration consists of maximizing the

expected complete-data log-likelihood function, where the expectation is computed with re-

spect to the conditional distribution of the unobserved data given the observed measurements.

A good choice of unobserved data allows easy maximization of the expected complete-data

log-likelihood. The algorithm converges monotonically to a local or the global maximum

of the observed-data likelihood function, see e.g. [66, Ch. 3]. Here, the unknown symbols

u(t), t = 1, 2, . . . , N are modeled as the unobserved (or missing) data. Given u(t), the corre-

sponding observed snapshot y(t) is distributed as a complex multivariate Gaussian vector with

probability density function (pdf):

f(y(t)|u(t),h,Σ ) =
1

|πΣ | · exp
{
− [y(t) − hu(t)]HΣ−1[y(t) − hu(t)]

}
, (2.7)

where “(·)H” denotes the Hermitian (conjugate) transpose. The above expression also holds

for the training data, with y(t) and u(t) replaced by yT (τ) and uT (τ). The joint distribution

of y(t), u(t) (for t = 1, 2, . . . , N), and yT (τ) (for τ = 1, 2, . . . , NT ) can be written as

N∏

t=1

p(u(t))f(y(t)|u(t),h,Σ ) ·
NT∏

τ=1

f(yT (τ)|uT (τ),h,Σ ), (2.8)
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which is also known as the complete-data likelihood function. The observed-data likelihood

function to be maximized is then

[ ∑

u(1)∈U

∑

u(2)∈U

· · ·
∑

u(N)∈U

N∏

t=1

p(u(t)) f(y(t)|u(t),h,Σ )
]
·

NT∏

τ=1

f(yT (τ)|uT (τ),h,Σ )

=

N∏

t=1

[ M∑

m=1

1

M
· f(y(t)|um,h,Σ )

]
·

NT∏

τ=1

f(yT (τ)|uT (τ),h,Σ ).

(2.9)

In Appendix 2.A, we derive the EM algorithm for maximizing (2.9): Iterate between

Step 1:

h(k+1) =
1

N +NT

{ N∑

t=1

[
y(t)

M∑

m=1

u∗m · ρ(k)
m (t)

]
+

NT∑

τ=1

yT (τ)uT (τ)∗
}
, (2.10)

where

ρ(k)
m (t) =

exp{−[y(t) − h(k)um]H(Σ (k))−1[y(t) − h(k)um]}
∑M

n=1 exp{−[y(t) − h(k)un]H(Σ (k))−1[y(t) − h(k)un]}
, (2.11)

and

Step 2:

Σ (k+1) = Ryy − h(k+1)(h(k+1))H . (2.12)

Here

Ryy =
1

N +NT

[ N∑

t=1

y(t)y(t)H +

NT∑

τ=1

yT (τ)yT (τ)
H
]

(2.13)

is the sample correlation matrix of the observed data and “∗” denotes complex conjugation.

Note that the terms in the summation over t in (2.10) can be computed in parallel. To ensure

that the estimates of the spatial noise covariance matrix in (2.12) are positive definite with

probability one, the following condition should be satisfied:

N +NT ≥ nR + 1, (2.14)

see also the discussion in Appendix 2.A. Expression (2.11) can be further simplified by canceling

out terms in the numerator and denominator:

ρ(k)
m (t) =

exp[2Re{y(t)H(Σ (k))−1h(k)um}]
∑M

n=1 exp[2Re{y(t)H(Σ (k))−1h(k)un}]
, (2.15)

where we have used the constant-modulus property of the transmitted symbols. In the (k+1)st

iteration, Step 1 requires computing (Σ (k))−1, which can be done using the matrix inversion
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lemma in e.g., [42, Cor. 18.2.10]:

(Σ (k))−1 = R−1
yy +

R−1
yy h

(k)(h(k))HR−1
yy

1 − (h(k))HR−1
yy h

(k)
, (2.16)

where R−1
yy needs to be evaluated only once, before the iteration starts. Then, (Σ (k))−1h(k)

simplifies to:

(Σ (k))−1h(k) =
R−1
yy h

(k)

1 − (h(k))HR−1
yy h

(k)
. (2.17)

In the following, we discuss phase correction of the EM channel estimates.

2.3.1 Phase Correction

We describe a method for correcting the phases of the channel estimates in the EM iteration.

Observe that the first product term in (2.9) is due to the unknown symbols, whereas the second

term
NT∏

τ=1

f(yT (τ)|uT (τ),h,Σ ) (2.18)

is due to the training symbols, and is equal to the likelihood function for the case where only

the training data are available. For i.i.d. symbols considered here [see (2.4)], the first term

in (2.9) has M equal maxima (due to the phase ambiguity), which could cause the above

EM iteration to converge to a local maximum of the likelihood function. We correct the

phase of the EM channel estimates h(k) to ensure that (2.18) is maximized. For example,

for a QPSK constellation, we find which of the following four vectors: h(k), h(k) exp(jπ/2),

h(k) exp(−jπ/2), and h(k) exp(jπ) maximizes the training-data likelihood function in (2.18)

and update h(k) accordingly. This test is computationally very efficient and may not need to

be performed at every step of the EM iteration.

2.4 Cramér-Rao Bounds

We derive the CRB matrix for the unknown parameters under the measurement model

in Section 2.2. First, define the vector of the unknown channel and noise parameters ζ =

[ηT ,ψT ]T , where η = [Re(h)T , Im(h)T ]T and ψ = [Re{vech(Σ )}T, Im{vech(Σ )}T ]T . (The
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vech and vech operators create a single column vector by stacking elements below the main

diagonal columnwise; vech includes the main diagonal, whereas vech omits it.) Define also the

vector of the observed data

υ=[y(1)T,y(2)T, . . . ,y(N)T,yT (1)T,yT (2)T, . . . ,yT (NT )T ]T (2.19)

and the vector of the unobserved data

u = [u(1), u(2), . . . , u(N)]T . (2.20)

Then, the CRB matrix for the unknown parameters ζ is computed as (see [66, Ch. 3.8.1]):

CRB(ζ) =
{
Eυ [s(υ; ζ)s(υ; ζ)T ]

}−1
, (2.21)

where the expectation is performed with respect to the distribution of υ and s(υ; ζ) is the

observed-data score vector. The observed-data score vector can be computed as (see [66, eq.

(3.42)]):

s(υ; ζ) = Eu|υ [sc(υ,u; ζ)|υ], (2.22)

where sc(υ,u; ζ) is the complete-data score vector, obtained by differentiating the complete-

data log-likelihood function [i.e. the logarithm of (2.8)] with respect to ζ. Computing the expec-

tations in (2.21) and (2.22) is discussed in Appendix 2.B, where the expression for sc(υ,u; ζ)

is also given.

2.5 Detection

We now utilize the channel and noise estimators proposed in Section 2.3 to detect the unknown

transmitted symbols u(t). We apply the (estimated) maximum a posteriori (MAP) detector:

û(t) = arg max
u(t)∈U

exp{−[y(t) − ĥu(t)]H Σ̂−1[y(t) − ĥu(t)]}
∑M

n=1 exp{−[y(t) − ĥun]H Σ̂−1[y(t) − ĥun]}
(2.23)

= arg min
u(t)∈U

[y(t) − ĥu(t)]H Σ̂−1[y(t) − ĥu(t)] (2.24)

= arg max
u(t)∈U

Re{y(t)HR−1
yy ĥ · u(t)}, (2.25)
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where ĥ = h(∞) and Σ̂ = Σ (∞) are the ML estimates obtained from the EM iteration (2.10)–

(2.12) upon convergence. To derive (2.25), we have used the identity (2.17) and the constant-

modulus property of the transmitted symbols. Interestingly, the detector in (2.25) is a function

of the channel estimate ĥ only, through the R−1
yy ĥ term. Note that the above detection problem

is equivalent to finding m ∈ {1, 2, . . . ,M} that maximizes ρ
(∞)
m (t) in (2.15) [see also (2.11)].

The detector (2.24) and EM algorithm (2.10)–(2.12) can be easily modified to account for

unequal prior probabilities of the transmitted symbols.

2.6 Simulation Results

We evaluate the performance of the proposed estimation and detection algorithms using

numerical simulations. We consider an array of nR = 5 receiver antennas. Our performance

metrics are the mean-square error (MSE) and symbol error rate (SER), averaged over 5000

random channel realizations generated using an i.i.d. Rayleigh fading model with unit-variance

channel coefficients. The transmitted symbols were generated from an uncoded QPSK mod-

ulated constellation (i.e. M = 4) with normalized energy. We added a three-symbol training

sequence (NT = 3), which was utilized to obtain the initial channel estimate h(0), computed us-

ing least squares. The initial estimate of the noise covariance matrix was chosen as Σ (0) = Ryy.

The signal was corrupted by additive complex Gaussian noise with spatial noise covariance ma-

trix Σ whose (p, q)th element is

Σp,q = σ2 · 0.9|p−q| · exp[j(π/2)(p − q)], (2.26)

which is the noise covariance model used in [109] (see also references therein). The bit signal-

to-noise ratio (SNR) per receiver antenna was defined as

SNR = 10 log10

[ 1

σ2 · log2(M)

]
= 10 log10

( 1

2σ2

)
(dB). (2.27)

In the cases where the EM algorithm did not converge within 40 iterations, it was restarted

using a randomly selected initial value for the channel coefficients2. [We implemented the same

2Note that fast convergence of the EM algorithm or utilizing the above restart method do not guarantee
convergence to the global maximum of the observed-data likelihood function. Hence, our simulation results
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restart procedure in all algorithms whose performance is analyzed in this section.] We also

applied the phase correction technique in Section 2.3.1 at every step of the EM iteration.

In the first set of simulations, the bit SNR was set to −1 dB. In Figs. 2.1 and 2.2, we show

the average MSEs (and corresponding average CRBs) for the ML estimates of the channel

coefficients3 and selected elements of the spatial noise covariance matrix Σ (obtained using the

proposed EM algorithm) as functions of the block length N . Fig. 2.1 also compares the MSE

performance of the proposed EM algorithm with

• the decoupled weighted iterative least squares with projection (DW-ILSP) method in [84]

and

• an EM algorithm that assumes spatially white noise.

For completeness, we summarize below our implementation of DW-ILSP method:

1. Given an initial estimate of h = h(0), k = 0.

2. At k = k + 1 iteration, for t = 1, . . . , N ,

(a) Weighted least-square estimate of transmitted symbols:

û(t) =

(
h(k))HR−1

yy y(t)

(h(k))HRyyh
(k)

. (2.28)

(b) Project onto nearest constellation point:

û(t) = proj[û(t)]. (2.29)

(c) least-square estimate of channel:

h(k+1) =
1

N

N∑

t=1

R−(1/2)
yy y(t)û(t)∗. (2.30)

3. Repeat step 2) until converagence.

This method is initialized with the least-square estimate using the pilot codewords

h(k+1) =
1

NT

NT∑

τ=1

R−(1/2)
yy yT (τ)ûT (τ)∗. (2.31)
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Figure 2.1 Average mean-square errors and corresponding Cramér-Rao
bounds for the channel estimates obtained using the proposed
EM algorithm, DW-ILSP method, and an EM algorithm for
spatially white noise, as functions of N for NT = 3 and
SNR = −1 dB.

For low SNR (−1 dB), few training symbols (NT = 3) and short block lengths, the pro-

posed EM algorithm clearly outperforms the DW-ILSP method. In this scenario, the proposed

method attains the CRB for N = 100 symbols, compared with more than 4000 symbols needed

for the DW-ILSP method. [Note also that in fading channels the block length N is limited

by the coherence time of the channel.] The average numbers of iterations needed for the EM,

white-noise EM, and DW-ILSP algorithms to converge were 9, 9, and 6, respectively. For

N = 100, restart was needed in less than 0.1% of the total number of trials. A single EM iter-

ation has higher computational complexity than a DW-ILSP iteration for the same N , and the

complexity of both iterations increases linearly with N . However, the proposed EM algorithm

represent upper bounds on the performance achievable by the exact ML method.
3Here, averaging is performed over both the channel coefficients for different antennas (i.e. elements of ĥ)

and random channel and training-data realizations.
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typically needs a smaller N to attain the same MSE. To demonstrate the importance of incor-

porating the spatial color of the noise in channel estimation, we also show the performance of

an EM algorithm that assumes spatially white noise in the scenario where the noise is colored

[with covariance (2.26)]. The EM algorithm for spatially white noise follows from (2.10)–(2.12)

by substituting Σ (k) = (σ̂2)(k)InR into Step 1 in (2.10) and applying the following Step 2:

(σ̂2)(k+1) = tr(Σ (k+1))/nR, where Σ (k+1) was defined in (2.12), and InR denotes the identity

matrix of size nR. For low SNR (−1 dB) and few training symbols (NT = 3), the white-noise

EM algorithm breaks down.
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Figure 2.2 Average mean-square errors and corresponding Cramér-Rao

bound for the ML estimates of Σ1,1, Re{Σ2,1}, Im{Σ2,1},

Re{Σ3,1}, Im{Σ3,1} obtained using the proposed EM algorithm,

as functions of N for NT = 3 and SNR = −1 dB.

In Fig. 2.2, we show the average MSEs for the ML estimates of Σ1,1, Re{Σ2,1}, Im{Σ2,1},

Re{Σ3,1}, and Im{Σ3,1} (obtained using the proposed EM algorithm) and the corresponding
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CRBs as functions of N .
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Figure 2.3 Average mean-square errors for the channel estimates obtained
using the proposed EM algorithm, DW-ILSP method, and EM
algorithm for spatially white noise, as functions of the bit SNR
per receiver antenna for block lengths N = 50, 100, and 150.

In Fig. 2.3, the average MSEs for the channel estimates obtained by the proposed EM

algorithm for spatially correlated noise, DW-ILSP method, and EM algorithm for spatially

white noise are shown as functions of the bit SNR per receiver antenna for block lengths

N = 50, 100, and 150. When the average MSE is 0.03 and N = 100, the EM algorithm has

an advantage of about 9 dB over the DW-ILSP algorithm; this advantage further grows as N

decreases. An intuitive explanation for this performance improvement is that the EM algorithm

exploits additional information provided by the prior distribution of the unknown symbols in

(2.4). Note also that the number of parameters in the random-symbol measurement model

in Section 2.2 equals n2
R + 2nR, and, therefore, is independent of N . This is in contrast with

the DW-ILSP and other deterministic ML methods (e.g. [93], see also [24]) where the number

of parameters grows with N . For low SNRs, the white-noise EM algorithm performs poorly,
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see also Fig. 2.1. However, for high SNRs and small block lengths, it outperforms the EM

algorithm for spatially correlated noise. Hence, in this scenario, the fact that the white-noise

EM algorithm estimates a small number of parameters (2nR + 1) becomes more important

than accounting for spatial noise covariance (which, in addition, is poorly estimated due to the

small block length).
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Figure 2.4 Symbol error rates of the EM-based and DW-ILSP detectors, as
functions of the bit SNR per receiver antenna for block lengths
N = 50, 100, and 150.

In Fig. 2.4, we compare symbol error rates of the detector (2.25) which uses the ML

estimates of h and Σ [obtained from the EM iteration (2.10)–(2.12)] with

• the DW-ILSP detector in [84] and

• a white-noise detector

arg max
u(t)∈U

Re{y(t)Hĥwhite EM · u(t)}, (2.32)

where ĥwhite EM is computed using the EM algorithm for spatially white noise.
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The symbol error rates are shown as functions of the bit SNR per receiver antenna for block

lengths N = 50, 100, and 150. For the given range of SNRs and block lengths, the proposed

detector significantly outperforms the DW-ILSP detector. As expected, the white-noise detec-

tor performs poorly for low SNRs due to poor channel estimates provided by the white-noise

EM algorithm. Similarly, for high SNRs and small block lengths it outperforms the detector

in (2.25) due to the fact that the white-noise EM algorithm outperforms the EM algorithm

for spatially correlated noise in this scenario. The performance of the detector (2.25) improves

significantly as the block length increases due to the improved channel estimation. In contrast,

the performance of the white-noise detector is insensitive to the choice of the block length (for

the block lengths considered in Fig. 2.4), which can be explained by the fact that the white-

noise EM algorithm estimates a small number of parameters (and thus requires a relatively

small data size).

2.7 Summary

We developed an expectation-maximization algorithm for semi-blind estimation of single-

input multi-output fading channels in spatially correlated noise having unknown covariance.

We also derived a method for phase correction of the EM channel estimates and computed

the Cramér-Rao bounds for the unknown parameters. The proposed channel and noise esti-

mators were incorporated into the receiver design. We presented numerical simulations that

demonstrated the performance of the proposed methods, and compared them with the existing

techniques.

In next chapter, we will extend the proposed methods to the multi-input multi-output

(MIMO) systems with coded transmission. For coded transmission, an iterative receiver struc-

ture will be employed as explained in Chapter 1, where iterations between channel estimator

and error control decoder will further improve the channel estimation accuracy.
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2.8 Appendix 2.A EM Algorithm Derivation

We relax the constant-modulus assumption (2.3) and first derive the EM algorithm for

the general case where the symbols u(t), t = 1, 2, . . . , N, uT (τ), τ = 1, 2, . . . , NT belong to an

arbitrary constellation. This algorithm is then simplified to the constant-modulus scenario in

Sections 2.2 and 2.3.

By taking the logarithm of (2.8) and neglecting terms that do not depend on the parameters

h and Σ , we obtain the complete-data log-likelihood function

L(h,Σ ) = −(N +NT ) ·
{

ln |Σ |

+ tr[Σ−1 · (Ryy − ryuhH − hrH
yu + ruuhh

H)]
}
, (2.33)

where | · | denotes the determinant and

Ryy =
1

N +NT

[ N∑

t=1

y(t)y(t)H +

NT∑

τ=1

yT (τ)yT (τ)
H
]
, (2.34)

ryu =
1

N +NT

[ N∑

t=1

y(t)u(t)∗ +

NT∑

τ=1

yT (τ)uT (τ)∗
]
, (2.35)

ruu =
1

N +NT

[ N∑

t=1

|u(t)|2 +

NT∑

τ=1

|uT (τ)|2
]

(2.36)

are the natural complete-data sufficient statistics for estimating h and Σ , see e.g. [8]. At

the kth iteration, the E step computes the conditional expectation of the complete-data log-

likelihood given the observed data υ [see (2.19)] at the current parameter estimates h(k) and

Σ (k):

Q(h,Σ ;h(k),Σ (k)) = −(N +NT ) ·
{

ln |Σ |

+ tr[Σ−1 · (Ryy − r(k)
yu h

H − h(r(k)
yu )H + r(k)

uu hh
H)]
}
, (2.37)

where r(k)
yu = Eu|υ [ryu|υ;h(k),Σ (k)] and r(k)

uu = Eu|υ [ruu|υ;h(k),Σ (k)]. The above expression is

obtained from (2.33) by replacing ryu and ruu with their conditional expectations r(k)
yu and r(k)

uu .

The M step maximizes the above Q function with respect to h and Σ to produce

h(k+1),Σ (k+1) = arg max
h,Σ

Q(h,Σ ;h(k),Σ (k)). (2.38)
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The maximization of L(h,Σ ) in (2.33) with respect to h and Σ has well-known solutions given

by ryu/ruu and Ryy−ryurH
yu/ruu (respectively), provided that Ryy−ryurH

yu/ruu is a positive def-

inite matrix, see e.g. [26] and [74, Th. 10.1.1]. (These expressions follow from the multivariate

analysis of variance (MANOVA) model in multivariate statistical analysis, see [26] and [74].)

Hence, the M step is obtained by replacing ryu and ruu in ryu/ruu and Ryy − ryurH
yu/ruu with

their conditional expectations and the EM iteration follows:

Step 1:

h(k+1) =
1

N +NT

{ N∑

t=1

[
y(t)

M∑

m=1

u∗m · ρ(k)
m (t)

]
+

NT∑

τ=1

yT (τ)uT (τ)∗
}/

r(k)
uu , (2.39)

where

r(k)
uu =

1

N +NT

{ N∑

t=1

M∑

m=1

[|um|2 · ρ(k)
m (t)] +

NT∑

τ=1

|uT (τ)|2
}
. (2.39)

Step 2:

Σ (k+1) = Ryy − r(k)
uu · h(k+1)(h(k+1))H , (2.40)

where ρ
(k)
m (t) is computed using (2.11). Note that (2.39) and (2.40) each incorporate both E

and M steps. The condition (2.14) is needed to ensure that Σ (k+1) is a positive definite matrix

with probability one, which follows using arguments similar to those in [74, Th. 3.1.4], see also

[26, eq. (4)] and [74, Th. 10.1.1].

In the constant-modulus scenario (2.3), we have that r(k)
uu ≡ 1 for all k. Hence, setting

r(k)
uu = 1 in (2.39) and (2.40) yields the EM iteration (2.10)–(2.12).
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2.9 Appendix 2.B Cramér-Rao Bound

We present the expression for the complete-data score vector sc(υ,u; ζ) under the measure-

ment model (2.1)–(2.4) and discuss evaluating the expectations in (2.21) and (2.22), needed

for computing the CRB matrix. The complete-data score vector sc(υ,u; ζ) for this measure-

ment model is obtained by differentiating the complete-data log-likelihood function (2.33) with

respect to ζ (see [56, App. 15C]) and setting ruu = 1:

sc(υ,u; ζ)

=[Re{sc,h(υ,u; ζ)}T , Im{sc,h(υ,u; ζ)}T , sc,ψ(υ,u; ζ)T ]T, (2.41)

where sc,h(υ,u; ζ) and sc,ψ(υ,u; ζ) are given in (2.42) and (2.43), respectively.

sc,h(υ,u; ζ) = 2 · Σ−1 ·
{ N∑

t=1

[y(t)u(t)∗ − h] +

NT∑

τ=1

[yT (τ)uT (τ)∗ − h]
}

= 2 · (N +NT ) · Σ−1 · (ryu − h),

(2.42)

[sc,ψ(υ,u; ζ)]i = − (N +NT ) · tr
(
Σ−1 ∂Σ

∂ψi

)
+ (N +NT ) · hHΣ−1 ∂Σ

∂ψi
Σ−1h

+

N∑

t=1

y(t)HΣ−1 ∂Σ

∂ψi
Σ−1y(t) +

NT∑

τ=1

yT (τ)HΣ−1 ∂Σ

∂ψi
Σ−1yT (τ)

− hHΣ−1 ∂Σ

∂ψi
Σ−1 ·

N∑

t=1

[y(t)u(t)∗] −
N∑

t=1

[y(t)Hu(t)] · Σ−1 ∂Σ

∂ψi
Σ−1h

− hHΣ−1 ∂Σ

∂ψi
Σ−1 ·

NT∑

τ=1

[yT (τ)uT (τ)∗] −
NT∑

τ=1

[yT (τ)HuT (τ)] · Σ−1 ∂Σ

∂ψi
Σ−1h

=(N +NT ) ·
{
− tr

(
Σ−1 ∂Σ

∂ψi

)
+ tr

(
Σ−1hhHΣ−1 ∂Σ

∂ψi

)
+ tr

(
Σ−1RyyΣ

−1 ∂Σ

∂ψi

)

− tr
[
(Σ−1ryuh

HΣ−1 + Σ−1hrH
yuΣ

−1) · ∂Σ
∂ψi

]}
, i = 1, 2, . . . , n2

R.

(2.43)

To compute (2.43), the following identities can be utilized:

tr
(
A · ∂Σ

∂Σp,p

)
= Ap,p, p = 1, 2, . . . , nR, (2.45)
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and

tr
(
A · ∂Σ

∂ Re{Σ}p,q

)
= 2Re{Ap,q}, (2.45)

tr
(
A · ∂Σ

∂ Im{Σ}p,q

)
= 2 Im{Ap,q}, 1 ≤ q < p ≤ nR, (2.46)

where A is an arbitrary nR × nR Hermitian matrix. It follows from (2.42) and (2.43) that

computing the observed-data score vector s(υ; ζ) in (2.22) reduces to replacing ryu in (2.42)

and (2.43) with its conditional expectation given υ:

Eu|υ [ryu|υ] =
1

N +NT

{ N∑

t=1

[
y(t)

M∑

m=1

u∗m · ρm(t)
]

(2.47)

+

NT∑

τ=1

yT (τ)uT (τ)∗
}
, (2.48)

where

ρm(t) =
exp{−[y(t) − hum]HΣ−1[y(t) − hum]}

∑M
n=1 exp{−[y(t) − hun]HΣ−1[y(t) − hun]}

. (2.48)

Finally, the CRB matrix is computed using (2.21), which requires multidimensional integration

to evaluate the expectation with respect to the distribution of υ; this can be performed using

Monte Carlo integration, i.e. by averaging s(υ; ζ)s(υ; ζ)T over many realizations of υ.
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CHAPTER 3. MAXIMUM LIKELIHOOD CHANNEL AND NOISE

ESTIMATION FOR CODED MIMO SYSTEMS

3.1 Introduction

Multi-input multi-output (MIMO) fading channel estimation is a major challenge for mul-

tiple antenna systems because the detection of information symbols depends critically on the

availability of full or partial channel state information. Recently, there has been an increas-

ing interest in iterative channel estimation and data decoding [38, 7, 89], where data decision

obtained from the decoding, either hard or soft, is used as additional information to refine

the channel estimation. In [38] and [7], maximum likelihood (ML) and maximum a posteriori

(MAP) methods are used to estimate the channel via expectation-maximization (EM) algo-

rithms [22]. EM algorithms have also been applied for symbol detection, see [20] and [65].

Least-squares (LS) estimation together with hard and soft decision feedback is studied in [89].

All of these methods assume that the additive noise is both temporally and spatially white.

Channel estimation for MIMO systems in spatially correlated noise has been studied in [25] and

[63], where deterministic ML and simple non-iterative data decoding methods were proposed.

In this chapter, we propose an iterative channel estimation (via EM algorithm) and decod-

ing scheme for spatially correlated noise with unknown covariance matrix. Instead of MAP

estimation in [7] which requires knowledge of second-order statistical properties of the chan-

nel at the receiver, we estimate both the channel and the spatial noise covariance without

prior knowledge of the channel statistical properties. This work generalizes our results for

single-input multi-output (SIMO) systems in Chapter 2 to the coded MIMO scenario. For

comparison, we also develop an iterative receiver which alternates between deterministic ML

channel estimation [63, 25, 12] with soft decision feedback and error-control decoding.
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The system model is introduced in Section 3.2. In Section 3.3, we derive the EM algorithm

for estimating the unknown channel and noise parameters. Section 3.4 discussed the design of

the iterative space-time receiver. We discuss the initial values and Cramér-Rao bounds of the

channel estimation in Section 3.5. Simulation results are presented in Section 3.6 and Section

3.7 concludes this chapter.

3.2 System Modeling

We consider a coded MIMO system having nT transmit and nR receive antennas in a

frequency-flat block fading environment. We will use turbo code as an example of the error

control code. Other codes, such as low-density parity-check (LDPC) codes, can also be used.

The discrete-time transmitter model is shown in Fig. 3.1.

- -
cTurbo

encoder

u
-Modulator

Channel
interleaver

- ST
encoder

- Pilot
insertion

-

6

s s′ Xc

Xp
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Figure 3.1 Discrete-time transmitter model

Suppose that a block of L space-time codewords X of size nT ×K each are transmitted.

The lth received space-time data matrix Y l can be modeled as

Y l = H ·X l +El, l = 1, 2, . . . , L, (3.1)

where H is an unknown nR×nT channel response matrix; X l is the lth transmitted space-time

codeword; El = [el(1) · · · el(K)] is the lth noise matrix, where el(k) is temporally white and

circularly symmetric zero-mean complex Gaussian noise vector with unknown spatial covari-

ance matrix Σ . It models co-channel interference (CCI) and receiver noise. This is a standard

model for a communication channel, subject to (unstructured) interference and jamming, see

e.g., [23, 25, 63].

We assume that M -ary phase shift keying (PSK) modulation and space-time orthogonal

design (cf [3, 101, 33]) are used. However, after minor modifications, the proposed method can

also be applied to other modulation schemes and general space-time codes. In Appendix 2.A, we

discuss similar modifications for the SIMO case; the extension to the MIMO case is straight-
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forward, leading to algorithms with higher computational complexity compared with those

presented herein. Without loss of generality, assume that each space-time codeword X l is a

linear function of K ′ transmitted symbols Sl = {s(l)1 , . . . , s
(l)
K ′}:

X l =
K ′∑

k=1

(
Re{s(l)k }Ak + j · Im{s(l)k }Bk

)
, (3.2)

where Re{·} and Im{·} denote the real and imaginary parts, and Ak and Bk are fixed

real-valued nT × K “elementary” code matrices, satisfying the orthogonality conditions as

follows[101, 33] :

AkA
T
k = I nT , BkB

T
k = I nT , AkB

T
t = B tA

T
k

AkA
T
t = −AtA

T
k , BkB

T
t = −B tB

T
k , k 6= t (3.3)

so that

X lX
H
l =

K ′∑

k=1

|s(l)k |2 · I nT = K ′I nT , (3.4)

where (·)T and (·)H denote the transpose and the conjugate transpose, respectively, and sym-

bols s
(l)
k from M -ary PSK constellation are assumed to have unit energy. The number of

transmitted symbols K ′ represented by one space-time codeword is usually less than the code-

word length K when nT > 2, and is equal to K when nT = 2.

To allow unique estimation of the channel H (i.e., to resolve the phase ambiguity associated

with PSK modulation), we further assume that Lp known pilot space-time codewords X p,ℓ,

ℓ = 1, . . . , Lp, are inserted at the beginning of the block, and denote the corresponding data

matrices received by the array as Y p,ℓ. Usually, Lp is a small number (say 2) and the pilot

symbols alone do not provide good channel estimation. We adopt the block fading assumption

implying that the channel H and noise covariance matrix Σ remain constant within each block

of (L + Lp) codewords, i.e., K(L+ Lp) time intervals, and change from one block to another

independently.

Since turbo codes need long frame length to achieve good error performance, and the length

of one block is limited by the coherent time of the fading channel, the turbo encoder implements

coding across R blocks. Therefore, one turbo code frame is composed of R(L+Lp) space-time
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codewords. At the receiver, the turbo decoder needs the estimates of the channels and the

noise covariance matrices for all R blocks. A channel interleaver is used to spread the effect of

imperfect channel estimates across the whole R blocks.

3.3 EM Algorithm for Channel Estimation

In this section, we derive an EM-based channel and noise covariance estimator from one

block. The proposed method incorporates extrinsic information about the transmitted symbols

from the turbo decoder through prior symbol probabilities. The estimates of the channel and

noise covariance matrix will be used to update the extrinsic information about the transmitted

symbols used by the turbo decoder.

Given a block of received data [Y p,1, . . . ,Y p,Lp ,Y 1, . . . ,Y L], the pilot space-time code-

words [X p,1, . . . ,X p,Lp ], and the prior probabilities of the space-time codewords X 1, . . . ,X L,

we wish to find the ML estimates of the channel H and the noise covariance matrix Σ for this

block.

The EM algorithm is a general iterative method for computing ML estimates in the sce-

narios where ML estimation cannot be easily performed by directly maximizing the likelihood

function for the observed data [22]. Each EM iteration consists of maximizing the expected

complete-data log-likelihood function, where the expectation is computed with respect to the

conditional distribution of the unobserved data given the observed data. A good choice of

unobserved data allows easy maximization of the expected complete-data log-likelihood.

For our channel estimation problem, the unknown space-time codewords {X l}L
l=1 are mod-

eled as the unobserved (or missing) data. By generalizing our results for SIMO systems in

Chapter 2, we obtain the following EM iteration:

Step I:

H (i+1) =
1

(L+ Lp)K ′

[
L∑

l=1

Y lEXl|Y l
(XH

l ;H (i),Σ (i)) +

Lp∑

ℓ=1

Y p,ℓX
H
p,ℓ

]
(3.5)
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Step II:

Σ (i+1) = Ryy −
K ′

K
·H (i+1)(H (i+1))H (3.6)

where

Ryy =
1

(L+ Lp)K

[
L∑

l=1

Y lY
H
l +

Lp∑

ℓ=1

Y p,ℓY
H
p,ℓ

]
. (3.7)

Note that both Steps I and II contain both the expectation and maximization steps. To ensure

positive definiteness (with probability one) of the estimates of Σ , the following condition needs

to be satisfied:

(L+ Lp)K ≥ (nT + nR), (3.8)

see e.g., [74, Theorems 10.1.1 and 3.1.4]. Since there is a one-to-one mapping between the set of

information symbols Sl and the codeword X l, conditioning on Sl is equivalent to conditioning

on X l. Following a derivation similar to [63, eq. 7], the likelihood function of X l, H and Σ

can then be written as

f(Y l|X l;H ,Σ ) = f(Y l|Sl;H ,Σ )

= const ·
K ′∏

k=1

exp
{
2Re

((
Re
(
Tr
[
Y H

l Σ−1HAk

])

+j · Im
(
Tr
[
Y H

l Σ−1HBk

]))
s
(l)
k

)}

= const ·
K ′∏

k=1

fk(Y l|s(l)k ;H ,Σ )

(3.9)

where const denotes the terms that do not depend on s
(l)
k . The second equality in the above ex-

pression follows by applying the orthogonality conditions in (3.3) which leads to the decoupling

of the likelihood function for the space-time codeword into the product of the likelihood func-

tions fk(Y l|s(l)k ;H ,Σ ) for the information symbols s
(l)
k , where the normalizing constants have

been omitted. Assume that the information symbols s
(l)
k , k = 1, . . . ,K ′, l = 1, . . . , L, are inde-

pendent and have the prior probability mass functions p(s
(l)
k ) = p(s

(l)
k = sm), m = 1, . . . ,M ,
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then Step I of the EM iteration can be simplified as

H (i+1) =
1

(L+ Lp)K ′

[
L∑

l=1

K ′∑

k=1

Y l

(
Re
(
E

s
(l)
k |Y l

[
s
(l)
k ;H(i),Σ (i)

])
AH

k

−j · Im
(
E

s
(l)
k |Y l

[
s
(l)
k ;H(i),Σ (i)

])
BH

k

)
+

Lp∑

ℓ=1

Y p,ℓX
H
p,ℓ

]
,

(3.10)

where

E
s
(l)
k |Y l

[
s
(l)
k ;H(i),Σ (i)

]
=

M∑

m=1

sm p(s
(l)
k = sm) fk(Y l|sm;H (i),Σ (i))

M∑

n=1

p(s
(l)
k = sn) fk(Y l|sn;H (i),Σ (i))

(3.11)

and Step II remains the same. The prior probabilities p(s
(l)
k ) comes from the error control

decoder.

Most of the computations are in the calculation of (3.10). Given E
s
(l)
k |Y l

[s
(l)
k ;H(i)

,Σ (i)], we

need 2nRK ·LK ′ +2nRnTK ·K ′ multiplications to compute H (i+1). According to (3.9), 2nRK

multiplications are needed for computing E
s
(l)
k |Y l

[s
(l)
k ;H(i)

,Σ (i)]. If K ′ = K = nR = nT , n,

then the total computational complexity can be expressed as O(4n2) per symbol per iteration.

3.4 Iterative Space-Time Receiver

Bank of EM
channel estimators

& demodulator

-Y

-

¾

Turbo
decoder

-
APP(u)

λ
12(sk)

λ
21(sk)

-û

Figure 3.2 The receiver with iterative channel estimation and decoding

The proposed iterative receiver model is shown in Fig. 3.2. It consists of two modules:

a bank of R channel estimators and demodulators (developed in the previous section) and

a turbo decoder. The soft information about the information symbols is exchanged between

them. For simplicity, we have not shown the interleaver and deinterleaver in the diagram. In

the following, we also assume that the interleaving and deinterleaving operations are performed

as needed.
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The received data Y are first divided into R blocks
{
[Y r

p,1, . . . ,Y
r
p,Lp

,Y r
1, . . . ,Y

r
L]
}R

r=1

each of length (L+Lp)K, and then fed into R channel estimators. Based on the pilot codewords

and the prior probabilities of the information symbols, each channel estimator estimates the

channel Ĥ r and noise covariance matrix Σ̂ r, then computes the posterior log-probabilities of

the information symbols as follows

Λ1
r [s

(l)
k ] = const + log p(s

(l)
k ) + log f1(Y

r
l |s

(l)
k ; Ĥ r, Σ̂ r)

= const + λ21
r [s

(l)
k ] + λ12

r [s
(l)
k ]

r = 1, . . . , R, l = 1, . . . , L, k = 1, . . . ,K ′.

(3.12)

where const denotes the terms independent of s
(l)
k . The second term λ21

r [s
(l)
k ] represents the prior

log-probability of the information symbol s
(l)
k , which is computed by the turbo decoder in the

previous iteration, and then fed back to the channel estimator. For the first iteration, we assume

equally likely symbols, i.e., no prior information available. The third term λ12
r [s

(l)
k ] in (3.12)

represents the extrinsic information produced by the channel estimator and demodulator, based

on the received data Y r, pilot codewords, and the prior information of all other symbols in the

block. All the extrinsic information metrics
{
λ12

r [s
(l)
k ]
}R,K ′,L

r=1,k=1,l=1
are reassembled together,

and sent into the turbo decoder, as the prior information for the decoding.

Using the extrinsic information of the information symbols coming from channel estimators

and the structure of the turbo codes, the turbo decoder computes the posterior log-probability

of each symbol as:

Λ2
r [s

(l)
k ] = const + λ12

r [s
(l)
k ] + log p(s

(l)
k |
{
λ12

r′ [s
(l′)
k′ ]
}R,K ′,L

r′=1,k′=1,l′=1,(r′,k′,l′)6=(r,k,l)
; code constraints)

= const + λ12
r [s

(l)
k ] + λ21

r [s
(l)
k ]

(3.13)

It is seen from (3.13) that the output of the turbo decoder consists of the prior information

λ12
r [s

(l)
k ], provided by the channel estimators, and the extrinsic information λ21

r [s
(l)
k ] delivered

to the channel estimators in the next iteration. This extrinsic information is the information of

the symbol s
(l)
k in the rth block obtained from the prior information of the other symbols in the
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frame and the code constraints. The turbo decoder also outputs the a posteriori probability

APP(ui) of every information bit ui, which is used to do the decision in the last iteration.

3.5 Discussion

3.5.1 Initialization of the EM algorithm

Although the EM algorithm increases (or at least does not decrease) the likelihood function

at each iteration, it may get trapped at the local maximum when the initial values are too far

from the true parameters. So we need a more robust method to give good initial estimates of

the channel and noise covariance matrices, which are used to initialize our EM algorithm.

For this purpose, we choose the iterative weighted least-squares with projections (ILSP)

method for space-time coding systems proposed in [85]. For completeness, we summarize below

our implementation of this method:

1. Fix H = Ĥ and compute

X̂ l = proj
[
H HR−1

yy Y l

]
, l = 1, . . . , L, (3.14)

2. Fix X 1 = X̂ 1, . . . ,XL = X̂L and compute

Ĥ =
1

(L+ Lp)K ′
·
[

L∑

l=1

Y lX
H
l +

Lp∑

ℓ=1

Y p,ℓX
H
p,ℓ

]
. (3.15)

Go to step 1 and repeat.

where proj[·] denotes projection onto the nearest (in the Frobenius norm) space-time codeword.

This method is initialized with the least-square estimate using the pilot codewords

Ĥ LS =
1

LpK ′

Lp∑

ℓ=1

Y p,ℓX
H
p,ℓ . (3.16)

After several iterations, we obtain a rough estimate of the channel, then the estimate of the

noise covariance matrix is computed using (3.6), both of which will be used to initialize the

EM algorithm.
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3.5.2 Modified Cramér-Rao Bound

The exact Cramér-Rao bound (CRB) for the unknown parameters under the data model

in Section 3.2 is difficult to compute. Here, we derive the modified CRB (MCRB) [35], which

is a lower bound on the exact CRB. First, we rewrite (3.1) by stacking all K time samples

from the lth received space-time data matrix into a single vector:

yl = Z lhl + el, (3.17)

Z l = X l
T ⊗ I nR , (3.18)

where yl = vec(Y l), hl = vec{H l}, ek = vec(El), ⊗ denotes the Kronecker product, and the

vec operator stacks the columns of a matrix one below another into a single column vector.

Then, (3.17) holds for the pilot data as well, with Y l and X l replaced by Y p,ℓ and X p,ℓ, respec-

tively. Define also Z p,ℓ = X T
p,ℓ⊗I nR and the vector of the unknown channel and noise param-

eters ρ = [ηT ,ψT ]T , where η = [Re(h)T , Im(h)T ]T and ψ = [Re{vech(Σ)}T, Im{vech(Σ )}T ]T .

(The vech and vech operators create a single column vector by stacking elements below the

main diagonal columnwise; vech includes the main diagonal, whereas vech omits it.) The

MCRB for the unknown parameters ρ is identical to the exact CRB for these parameters when

the space-time codewords X l are known, and is equal to:

MCRBρ =




MCRBη 0

0 MCRBψ


 , (3.19)

where

MCRBη =
1

2K ′(L+ Lp)
·




Re{I nT ⊗Σ} −Im{I nT ⊗Σ}

Im{I nT ⊗Σ} Re{I nT ⊗Σ}


 , (3.20)

MCRBψ =
1

K ′(L+ Lp)
· I−1
ψ (3.21)

and the (i, k)th element of Iψ is

[Iψ]i,k = tr

{
Σ−1 ∂Σ

∂ψi

Σ−1 ∂Σ

∂ψk

}
, I(ψi,ψk), (3.22)
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for i, k = 1, 2, . . . , n2
R. Denote by Σp,q the (p, q) element of Σ , for p, q = 1, 2, . . . , nR. Using

this notation, we further simplify (3.22): for p1 > q1 and p2 > q2, we have

I(Re{Σ p1,q1},Re{Σ p2,q2}) = I(Re{Σ p2,q2},Re{Σ p1,q1})

= 2·Re
{
[Σ−1]q2,p1 ·[Σ−1]q1,p2 + [Σ−1]q2,q1 ·[Σ−1]p1,p2

} (3.23)

I(Re{Σ p1,q1}, Im{Σ p2,q2}) = I(Im{Σ p2,q2},Re{Σ p1,q1})

= −2·Im
{
[Σ−1]q2,p1 ·[Σ−1]q1,p2 + [Σ−1]q2,q1 ·[Σ−1]p1,p2

} (3.24)

I(Im{Σ p1,q1}, Im{Σ p2,q2}) = I(Im{Σ p2,q2}, Im{Σ p1,q1})

= 2·Re
{
− [Σ−1]q2,p1 ·[Σ−1]q1,p2 + [Σ−1]q2,q1 ·[Σ−1]p1,p2

}
,

(3.25)

for p1 = q1 and p2 > q2,

I(Σp1,p1,Re{Σ p2,q2}) = I(Re{Σ p2,q2},Σ p1,p1) = 2 · Re
{
[Σ−1]q2,p1 · [Σ−1]p1,p2} (3.26)

I(Σp1,q1, Im{Σ p2,q2}) = I(Im{Σ p2,q2},Σ p1,q1) = −2 · Im
{
[Σ−1]q2,p1 · [Σ−1]p1,p2

}
, (3.27)

and, for p1 = q1 and p2 = q2,

I(Σp1,p1,Σ p2,p2) =
∣∣[Σ−1]p1,p2

∣∣2. (3.28)

3.6 Simulation Results

We use numerical simulations to evaluate performance of the proposed iterative channel

estimation and decoding scheme for a turbo coded MIMO system in a frequency-flat corre-

lated Rayleigh fading environment with nT = 2 transmit and nR = 2 receive antennas. Our

performance metrics are the average mean-square error (MSE), bit error rate (BER), and

frame error rate (FER), averaged over random channel realizations generated using an inde-

pendent identically distributed Rayleigh fading model with unit-variance channel coefficients.

The Alamouti transmission scheme [3] was used to generate the space-time codewords X l,

implying K ′ = K = 2. The transmitted symbols {s(l)k } were generated from a 4-PSK constel-

lation (i.e., M = 4) with normalized energy. The space-time codewords were transmitted in R

blocks as one frame, and each block consisted of Lp = 2 pilot codewords followed by L = 32
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data codewords. The signal was corrupted by additive complex Gaussian noise with spatial

noise covariance matrix Σ whose (p, q)th element is

Σ p,q = σ2 · 0.9|p−q| · exp[j(π/2)(p − q)], (3.29)

which is the noise covariance model used in [109] (see also references therein). For simplicity,

we assume that Σ does not change within the data frame, but this knowledge is not used in

the channel and noise covariance estimation. The turbo code consisted of two parallel concate-

nated (37, 21) recursive systematic convolutional codes connected with a random interleaver.

Puncturing was employed to achieve the code rate Rc = 1/2. The bit signal-to-noise ratio

(SNR) per receive antenna was defined as

SNR = 10 log10

[
L+ Lp

L
· nTK

K ′ log2(M) · Rc · σ2

]
= 10 log10

[
L+ Lp

L
· nT
σ2

]
(dB). (3.30)

To initialize the EM algorithm, four iterations of the iterative weighted ILSP method were

carried out.

We compare the proposed EM-based scheme with an iterative receiver using deterministic

ML channel estimation with soft decision feedback, which is similar to the iterative receiver

derived in Section 3.4, but with the channel estimation algorithm replaced by the deterministic

ML method [63, 25, 12]. The deterministic ML channel estimator utilizes the expectations of

the coded symbols computed from the extrinsic information produced by the decoder. Both

methods were initialized using the iterative weighted ILSP method.

Figure 3.3 shows the BER performance versus bit SNR per receive antenna with R = 16

blocks. Three iterations have been carried out between the EM channel estimators and the

turbo decoder. Clearly, iterating between the channel estimation and turbo decoding can

improve the error performance for both EM and deterministic ML methods. As a comparison,

we also present the performance of ideal coherent detector for exactly known H and Σ . After

three iterations, our method outperforms the deterministic ML by about 0.6 dB at BER =

10−4, and comes within about 2 dB of the performance of the ideal coherent detector.

Next, we study the performance of the proposed EM-based scheme for long frame length,

see Figs. 3.4, 3.5 and 3.6. Each data frame consisted of R = 64 blocks, and there were 6
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Figure 3.3 BER for EM-based, deterministic ML and ideal coherent detec-
tors with R = 16.

iterations between the EM channel estimators and the turbo decoder.

In Fig. 3.4, the average MSE of the channel estimates improves as the number of iterations

between the channel estimation and turbo decoding increases, and reaches the MCRB at

SNR ≥ −4 dB. Although the MCRB is the CRB assuming known information symbols,

and hence a lower bound of the exact CRB, it can be regarded as the exact CRB when

SNR ≥ −4 dB since the BER has become very small (see Fig. 3.5) such that almost all the

information symbols are correctly decoded.
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Figure 3.4 MSE of the channel estimates for EM-based method with
R = 64.
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Figure 3.5 BER for EM-based and ideal coherent detectors with R = 64.
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The BER and FER performances of the proposed scheme are depicted in Figs. 3.5 and

3.6, respectively. After three iterations, the improvement provided by more iterations becomes

smaller and smaller: an effect of diminishing returns. Such a saturation effect is more obvious

in the Fig. 3.6. The BER performance difference between our method and the ideal coherent

detector becomes negligible at a BER level of 10−6, which is achieved after only three iterations.

Unlike the BER performance which depends on the specific turbo code used in the system, FER

provides a performance measurement of the iterative receiver itself. It is seen from Fig. 3.6

that upon convergence, our method approaches the performance of the ideal coherent detector,

which is a lower bound of the performance for such MIMO systems.
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Figure 3.6 FER for EM-based and ideal coherent detectors with R = 64.

The proposed method takes into account spatial correlation of the noise. To demonstrate

the importance of this factor, we compare the proposed method with another EM-based iter-

ative receiver, termed white-noise EM method, under a spatial correlated noise scenario. The

method proposed in Section 3.4 differs from the white-noise EM method by the channel estima-
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tion algorithm. The white-noise EM algorithm assumes spatially white noise, i.e., Σ = σ2I nR ,

where σ2 is the variance parameter to be estimated. Therefore, the white-noise EM algorithm

is a modified version of the EM algorithm proposed in Section 3.3. The only modification is

that the Step II, i.e., (3.6), can be simplified as:

Σ (i+1) = Trace
(
Ryy −

K ′

K
·H (i+1)(H (i+1))H

)
· I nR . (3.31)

A similar algorithm assuming known noise variance is proposed in [38]. Figure 3.7 shows the

BER performance of the white-noise EM method after 3 and 6 iterations between channel esti-

mation and turbo decoding. As a comparison, the performance of the ideal coherent detector is

also provided. It is seen that the proposed method has a 7 dB advantage over the white-noise

EM method at a BER of 10−5 after both 3 and 6 iterations.
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Figure 3.7 BER for EM-based, white-EM based and ideal coherent detec-
tors with R = 64.
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3.7 Summary

We developed an EM-based iterative channel estimation and decoding scheme for a coded

system over MIMO Rayleigh block fading channels in spatially correlated noise. By exchang-

ing the extrinsic information of the transmitted symbols, both the channel estimation and the

decoding can be improved. We also presented the modified Cramér-Rao bounds for the un-

known parameters. Numerical simulations demonstrated the good performance of the proposed

method and other competitive schemes.

One possible extension of this work is to develop and adaptive version of the channel

estimation algorithm that can account for continuously varying channels (as opposed to the

block-fading scenario considered here) and also reduce the EM algorithm complexity. It is

also of interest to adapt the algorithm for frequency-selective MIMO channels, possibly in

combination with orthogonal frequency-division multiplexing (OFDM).
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CHAPTER 4. LOW-COMPLEXITY NEAR-OPTIMAL DETECTION

ALGORITHM FOR CODED MIMO SYSTEMS

4.1 Introduction

The demand of high data rate in wireless systems has been increasing extensively in recent

years. Communication systems utilizing multiple antennas at both the transmitter and the

receiver have been shown to have much higher spectral efficiency than the conventional single

antenna systems [31, 102].

Detection of the transmitted symbols is one fundamental and difficult problem for multiple

antenna systems, since the multi-input multi-output (MIMO) channel introduces interference

to the received signals. Recently there have been increasing interests in iterative detection and

decoding [17, 51, 58, 100], where MIMO detector can incorporate the soft information provided

by the channel decoder as a priori information to refine the symbol detection. In [17, 100],

parallel soft interference cancellation scheme was employed together with channel decoding

in an iterative way. However, the cancellation error caused by the bad symbols propagates

to other symbols, and can be amplified by the iterative decoding. In [58], a successive soft

interference cancellation was proposed, where the cancellation order was based on the estimated

signal-to-interference ratio (SIR). In [51], a “list” version of the sphere decoder is proposed,

which achieves good performance, but has high computational complexity.

In this chapter, a low-complexity near-optimal detector, namely ordered successive soft

interference cancellation (OSSIC), is proposed based on the BLAST (Bell-Labs Layered Space-

Time) detection algorithm. The differences from the original nulling-canceling scheme are: i)

we incorporate the prior probabilities coming from the error-control decoder into the nulling,

ordering and canceling steps, ii) linear minimum mean-square error (LMMSE) filtering in the
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nulling step uses the prior information of the transmitted symbols, iii) a posteriori probabilities

(APP), instead of signal to noise ratios (SNR), are used in the ordering strategy, and iv) soft

interferences computed from APP are canceled, instead of the hard interferences. The APP-

based ordering strategy was inspired by the work [57].

Another contribution is that we develop a “square-root” algorithm, based on [47], for our

proposed MIMO detector which can reduce the complexity to O(N3) per iteration, where N

is the number of transmit antennas.

Simulation results show that in a 4×4 MIMO system, our proposed low-complexity detector

can achieve near-optimal performance for both binary phase-shift keying (BPSK) modulation

and 16-quadrature amplitude modulation (QAM).

The remainder of this chapter is organized as follows. Section 4.2 describes the system

model and the iterative receiver design. Maximum a posterior (MAP) detector and our pro-

posed nulling/canceling detector are presented in Section 4.3. Section 4.4 extends our pro-

posed detector to M -ary modulation cases. Simulation results are presented in Section 4.5.

Section 4.6 concludes this chapter.

4.2 System model and receiver structure

We consider a narrow-band, frequency-flat Rayleigh fading, multi-antenna communication

system with nT transmit and nR(≥ nT ) receive antennas. Let s denotes an nT × 1 vector of

transmitted symbols, whose entries are chosen from BPSK constellation with average energy

Es per symbol. An extension to M -ary modulation will be discussed in Section 4.4. Let y

denote an nR × 1 vector of received signal at each symbol time

y = Hs+ n, (4.1)

where H = [h1, . . . ,hnT ] is the nR×nT channel matrix, known perfectly to the receiver, whose

elements are independent identically distributed (i.i.d.) complex Gaussian with zero mean and

unit variance, and n is an nR × 1 vector of independent zero-mean complex Gaussian noise

entries with variance N0/2 per real dimension.
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In this chapter, we study a coded MIMO system with vertical (V)-BLAST [36] transmission

scheme as shown in Fig. 4.1. A frame of information bits u is encoded by a channel encoder into

coded bits c, which are interleaved, modulated and divided into blocks of nT symbols. Each

block of symbols s is transmitted simultaneously by nT transmit antennas. The channel code is

chosen to be strong error-control codes, such as Low-Density Parity-Check (LDPC) codes and

turbo codes. Since the channel code introduces redundancy and correlation among different

blocks, it is sub-optimal for the MIMO detector and channel decoder to operate separately.

Channel
encoder Interleaver

u c S/Pmodulator

s
H

nT transmit
antennas

Figure 4.1 Discrete-time transmitter model

The optimal solution is the joint detection and decoding which computes the likelihood of

each information bit given the received data y’s, and the constraints imposed by the MIMO

channel H and the channel code. Unfortunately, it is computationally prohibitive even for

codes with reasonable frame length. Therefore, an iterative detection and decoding scheme is

employed to simplify the problem. Both the MIMO detector and the channel decoder are soft-

input soft-output (SISO) modules, and soft information of coded bits is exchanged between

them in an iterative way until desired performance is achieved. It has been shown that such

“turbo principle” is very effective and computationally efficient in other joint detection and

decoding problems [51, 104]. The iterative receiver structure is shown in Fig. 4.2.

The error-control encoder and decoder are relatively standard. The overall performance

and complexity will be determined by the MIMO detector module. We focus in detail on the

MIMO detector design in Section 4.3.
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Figure 4.2 Discrete-time receiver model

4.3 MIMO detection

The “best” known detector for the MIMO system (5.1) is the MAP detector which tries to

maximize the APP p(sk|y). However, the complexity of this detector grows exponentially with

the number of antennas, and becomes computationally infeasible for a system with a large

number of antennas. One effective alternative is the V-BLAST nulling/canceling algorithm

[36]. The conventional BLAST algorithm does not incorporate the reliability information

on symbols provided by the channel decoder and does not output soft information. In this

section, we present a nulling/canceling detector, namely ordered successive soft interference

cancellation (OSSIC), which i) uses prior information, ii) uses soft inference cancellation, iii)

adopts an ordering strategy based on a posterior probability [57], and iv) outputs extrinsic

information for the error-control decoder.

We will first briefly summarize the MAP detector, which we will compare with, and intro-

duce some standard definitions.

4.3.1 MAP detector

Maximizing the APP of a given symbol minimizes the error probability on that symbol.

For BPSK modulation, it is convenient to express the APP in the form of log-probability ratio

(LPR). For the MIMO system (5.1), the APP (in LPR form) Λk of the symbol sk, k = 1, . . . , nT ,
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conditioned on the received data y, is

Λk = ln
p(sk = +

√
Es|y)

p(sk = −√
Es|y)

= ln
p(sk = +

√
Es)

p(sk = −√
Es)

+ ln
p(y|sk = +

√
Es)

p(y|sk = −√
Es)

= λ21
k + λ12

k ,

(4.2)

where λ21
k is the a priori information on sk provided by the channel decoder, and λ12

k is the

extrinsic information which will be passed to the channel decoder as a priori information.

Given the a priori information λ21
k , k = 1, . . . , nT , the MAP detector needs to calculate the

extrinsic information λ12
k .

λ12
k = ln

p(y|sk = +
√
Es)

p(y|sk = −√
Es)

= ln

∑
s∈S1

k
p(y|s) · p(s)

∑
s∈S0

k
p(y|s) · p(s) , (4.3)

where

S0
k = {(s1, . . . , sk−1, sk = −

√
Es, sk+1, . . . , snT )},

S1
k = {(s1, . . . , sk−1, sk = +

√
Es, sk+1, . . . , snT )}

and

p(y|s) =
1

πN0
exp

−‖y −Hs‖2

N0
.

We assume that the interleaver at the transmitter “scrambles” the coded bits so that the

transmitted symbols sk’s are approximately statistically independent of one another. Thus,

p(s) =
∏nT

k=1 p(sk), where p(sk) may be easily computed from λ21
k . Since the summation in (4.3)

is over all the 2nT−1 possible values of s, the complexity of the detector grows exponentially

with the number of transmit antennas.

4.3.2 Proposed detector – OSSIC

We propose a nulling/canceling detector using soft inference cancellation and ordering

strategy based on APP. We incorporate the a priori information into the convention BLAST

detection algorithm. The nulling of interferences uses the LMMSE filter with a priori probabil-

ities, where the a priori probabilities of the transmitted symbols is from error control decoder.

The interference cancellation and the ordering are based on the a posterior probabilities, which
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is inspired by the work in [57], where it proposed to use the log-likelihood ratio (LLR) as the

ordering criterion for an uncoded system. Our algorithm consists of three parts: interference

nulling, interference canceling, and ordering. In practice, the algorithm proceeds in the order

of ordering, nulling, and cancellation.

[Nulling]

Given the received data y = Hs+n, and a priori information {λ21
k }nT

k=1 on s provided by

the channel decoder, the linear minimum mean-square error (MMSE) estimate of s is

x = s̄+ (N0D
−1 +HHH)−1HH(y −H s̄), (4.4)

where (·)H denotes complex conjugate transpose, and

s̄ = [s̄1, . . . , s̄nT ],

D = diag[σ̄2
1 , . . . , σ̄

2
nT

] 1.
(4.5)

For k = 1, . . . , nT , s̄k and σ̄2
k are the a priori mean and variance of sk induced from the a

priori distribution, which are defined as

s̄k = tanh{λ21
k /2} ·

√
Es,

σ̄2
k = (1 − tanh2{λ21

k /2}) ·
√
Es.

(4.6)

Let

W = (N0D
−1 +HHH)−1HH = [w1, . . . ,wnT ]H , (4.7)

where wk is an nR × 1 MMSE nulling vector, then

xk = s̄k +wH
k (y −H s̄) = wH

k hksk + (1 −wH
k hk)s̄k +wH

k ñk, (4.8)

where ñk =
∑nT

i=1,i6=k hi(si − s̄i) + n. It is easy to verify that the covariance matrix of the

estimation error s− x is

E(s− x)(s− x)H = N0 · (N0D
−1 +HHH)−1 , Σ. (4.9)

So the variance of (xk−sk) is Σkk, the k-th diagonal element of Σ. We assume that the residual

interference wH
k hi(si − s̄i), i = 1, . . . , k − 1, k + 1, . . . , nT are conditionally independent given
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y, and are independent of wH
k n. We assume wH

k ñk is complex Gaussian distributed with zero

mean and variance

σ2
k , Σkk − |1 −wH

k hk|2σ̄2
k. (4.10)

Thus after nulling the interference from all other symbols, except the k-th, we have

xk ∼ CN (wH
k hksk + (1 −wH

k hk)s̄k, σ
2
k), k = 1, 2, . . . , nT . (4.11)

[Canceling]

From (4.11) the APP of sk in the LPR form is given by

Λk = ln
p(sk = +

√
Es|xk)

p(sk = −√
Es|xk)

= ln
p(sk = +

√
Es)

p(sk = −√
Es)

+
4
√
Es

σ2
k

· Re{wH
k hk · x∗k}

= λ21
k + λ12

k ,

(4.12)

where (·)∗ represents complex conjugate, and λ12
k , 4

√
Es · Re{wH

k hk · x∗k}/σ2
k. Using soft

decision of sk based on APP:

ŝk = tanh {Λk/2} ·
√
Es (4.13)

and assuming correct detection, we softly cancel the interference caused by sk from y and

obtain a reduced order problem

y(1) = y − hkŝk = H(1)s(1) + n, (4.14)

where we have defined H(1) and s(1) as

H(1) = [h1, . . . ,hk−1,hk+1, . . . ,hnT ],

s(1) = [s1, . . . , sk−1, sk+1, . . . , snT ]T .

The solution to the reduced detection problem in (4.14) requires to compute the corresponding

error covariance matrix N0(N0D
−1
(1) +H(1)HH(1))−1 , Σ(1), where

D(1) = diag[σ̄2
1 , . . . , σ̄

2
k−1, σ̄

2
k+1, . . . , σ̄

2
nT

].
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[Ordering]

For nulling/canceling detection algorithm, the order in which the components of s are

detected and canceled is important to the overall system performance [30]. In general, the

conditional bit error probability Pe,k = P (ŝk 6= sk|xk) and the APP Λk are related by [57]

Pe,k =
1

1 + e|Λk|
. (4.15)

Thus, we detect and cancel the component of s that provides the largest |Λk| first. Since the

magnitude of Λk is the reliability information of the corresponding bit, the proposed ordering

strategy is equivalent to canceling the most reliable bit first.

4.3.3 Modified square-root algorithm

Assuming nT = nR = N , the proposed detector has the same order of computational

complexity O(N4) as the conventional BLAST algorithm [36], since both of them have the same

nulling step, which accounts for the majority of the computational cost due to the calculation

of matrix inverse. Next, we adapt the square-root algorithm proposed by Hassibi [47] to our

proposed detector such that the computational cost can be reduced from O(N4) to O(N3).

The QR decomposition of the augmented channel matrix [47] can be defined as



H

√
N0D

−1/2


 = Q1R =



Q

Q2


R, (4.16)

where Q1 is an (nR + nT ) × nT matrix with orthonormal columns, Q is nR × nT sub-matrix,

and R is nT × nT upper triangular matrix and nonsingular. Define P 1/2 to be such that

P 1/2PH/2 = Σ/N0. It is easy to verify that

P 1/2 = R−1 and W = P 1/2QH ,

where W and Σ are defined in (4.7) and (4.9) respectively. Let P
1/2
k denote the k-th row of

P 1/2 and V , QHH = [v1, . . . ,vnT ], then

wH
k = P

1/2
k QH ,

Σkk = N0 · ‖P 1/2
k ‖,

zk , wH
k hk = P

1/2
k vk,

(4.17)
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where ‖ ·‖ denotes the ℓ2 norm. Thus, given P 1/2 and V , we may compute APP Λk of sk using

(4.12) and (4.10).

In order to proceed with the nulling/canceling procedure, we need to find P (1)/2 and V (1)

for the reduced order problem (4.14) from P 1/2 and V . Similar to [47], we have the following

claims.

Claim 1: Reorder the entries of s and rows of P so that the |ΛnT | is the largest. Consider

any unitary transformation U that rotates the nT -th row P
1/2
nT of P 1/2 to lie along the direction

of the nT -th unit vector. In other words,

P 1/2U =



P (1)/2 A

0 p
1/2
nT


 , (4.18)

where p
1/2
nT is a scalar. Then P (1)/2 is a square-root of P (1).

Claim 2: Using the unitary transformation U obtained in Claim 1, rotate the columns of V

such that

UV =



V (1) B

c d


 , (4.19)

where d is a scalar. Then V (1) is the matrix V needed for the reduced order problem.

We can now summarize the proposed detector using modified square-root algorithm as

follows:

1. Compute P 1/2 and V by QR decomposition of the augmented channel matrix.

2. Find the largest |Λk| using (4.12), (4.10), (4.17) and permute P
1/2
k and P

1/2
nT . Permute s

accordingly.

3. Find a unitary transformation U such that P 1/2U is block upper triangular:

P 1/2U =



P (1)/2 A

0 p
1/2
nT


 .

4. Update V using U such that

UV =



V (1) B

c d


 .
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5. Obtain soft estimate of snT based on APP ΛnT as ŝnT = tanh{ΛnT /2} ·
√
Es.

6. Cancel the effect of snT , output the extrinsic information λ12
nT

, and consider the reduced

order problem (4.14).

7. Go back to step 2, but now with P (1)/2 and V (1).

In contrast to the MAP detector which has exponential complexity, our proposed algo-

rithm has O(N3) complexity. Such low complexity makes it more attractive for systems with

moderate number of antennas.

4.4 Extension to M-ary modulation

In this section, we extend the proposed MIMO detector to M -ary modulated signals. As-

sume the transmitted symbol sk is chosen from the set {α1, α2, . . . , αM}, then the APP of

sk = αm may be obtained from (4.11) as

p(sk = αm|xk) =
1

πσ2
k

exp
−|xk −wH

k hk · αm|2
σ2

k

· p(sk = αm)

p(xk)
, (4.20)

where p(sk = αm) is the a priori information of symbol sk, which may be calculated from the

a priori information of the corresponding coded bits provided by the channel decoder. (Here,

we assume that the coded bits within one transmitted symbol are independent due to the

interleaver at the transmitter.) Let

s̃k = arg max
αm

p(sk = αm|xk) (4.21)

be the MAP decision for the k-th symbol, and

Λk,m = ln
p(sk = αm|xk)

p(sk = s̃k|xk)

=
|xk −wH

k hk · s̃k|2 − |xk −wH
k hk · αm|2

σ2
k

+ ln
p(sk = αm)

p(sk = s̃k)

(4.22)

be the APP of sk = αm in the LPR form. Then the conditional probability of symbol error

given xk is [57]

P (s̃k 6= sk|xk) = 1 − P (s̃k = sk|xk)

= 1 − 1
∑M

m=1 exp(Λk,m)
.

(4.23)



www.manaraa.com

55

Thus, the symbol minimizing
∑M

m=1 exp(Λk,m), i.e., with the smallest conditional probability

of symbol error, is canceled first. The soft decision of sk is also computed based on the APP

ŝk =

M∑

m=1

αm · p(sk = αm|xk). (4.24)

Since the nulling step is the same for BPSK and M -ary modulation, the computational

complexities of two cases are roughly at the same order for large systems. The square-root

algorithm can also be modified for the M -ary modulation. The details are omitted here.

4.5 Simulation Results

Using numerical simulations, we evaluated the performance of the proposed iterative de-

tection and decoding scheme for a coded MIMO system in a frequency-flat Rayleigh fading

environment, with nT = 4 transmit and nR = 4 receive antennas. BPSK and 16-QAM were

employed with average energy Es per symbol. The rate R = 1/2 channel code was chosen to

be a turbo code with 9216 information bits, whose component encoders are (7, 5) convolutional

encoder. The signal was corrupted by additive complex Gaussian noise with zero mean and

spatial noise covariance matrix N0InR . The signal energy per transmitted information bit at

the receiver was defined as Eb = (NR/R) ·Es, therefore the bit SNR at the receiver was

SNR = 10 log10

Eb

N0
= 10 log10

nR · Es

R ·N0
(dB) (4.25)

We compared our proposed detector with the MAP detector, which is optimal but with

exponential computational complexity. For the 16-QAM case, a list sphere decoder (LSD)

[51] was used to approximate the MAP detector, which also has much higher computational

complexity compared with our proposed detector. There were 6 iterations between MIMO

detectors and channel decoder. As a reference, we also presented the performance of an-

other well-known MIMO detection algorithm, soft interference cancellation with linear MMSE

filtering (SIC+MMSE) [111], which has O(N3) complexity as our proposed detector. For com-

pleteness, we summarize below our implementation of this method (c.f. [111]). Here, we assume

the BPSK modulation, and the extension to 16-QAM modulation is straightforward.
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[SIC+MMSE]

For the detection of sk, k = 1, . . . , nT

1. Soft interference cancellation (SIC):

yk = y −
nT∑

i=1, i6=k

his̄i. (4.26)

where s̄i is the soft decision of si based on the a priori probability, and defined in (4.6).

2. Linear MMSE filtering:

zk = mH
k yk, (4.27)

where mk = P−1
k hk is the linear MMSE filter, and

Pk = HDHH +N0InR + s̄2khkh
H
k ,

where InR is nR × nR identity matrix, and D is defined in (4.5).

3. Extrinsic information calculation:

λ12
k =

4 · Re{zk}
1 −mH

k hk
. (4.28)

Fig. 4.3 shows the bit-error-rate (BER) performance versus bit SNR for BPSK modulation.

It is seen that the proposed OSSIC detector has the same performance as the MAP detector and

comes within about 0.6 dB of the Shannon limit at BER of 10−4. Such remarkable result tells

us that together with very strong error-control codes, our proposed detector can achieve the

“optimal” performance with low computational complexity at the order of O(N3). An intuitive

explanation is as follows. Strong error-control codes make the symbol error probability drop

so quickly that the soft information of coded bits provided by the channel decoder is almost all

correct, and the proposed detector can use this a priori information together with the likelihood

information from received data to almost perfectly cancel the interferences. Compared with

SIC+MMSE method, the proposed OSSIC detector has about 0.2 dB advantage at BER of

10−4 with the same computational complexity.
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Figure 4.3 BER of the iterative detection and decoding using proposed

OSSIC detector, MAP detector and SIC+MMSE detector for

MIMO systems with BPSK modulation.

The BER performance for 16-QAM modulation is shown in Fig. 4.4. We observe that the

proposed OSSIC detector comes within 2.2 dB of the Shannon limit, and even 0.1 dB better

than the LSD detector at BER of 10−4. Compared with SIC+MMSE detector, the advantage

of the proposed detector can reach 0.5 dB. Since the LSD detector’s performance is close to

the one of the MAP detector, we conclude that our proposed OSSIC detector can achieve

near-optimal performance with much lower complexity for 16-QAM modulation.

4.6 Summary

In this paper, we studied an iterative detection and decoding scheme for coded MIMO

systems. We proposed a low-complexity nulling/ canceling detector using soft interference

cancellation and ordering strategy based on a posteriori probability. Using the modified square-

root algorithm, the complexity of the proposed detector was reduced to O(N3) per iteration.
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Figure 4.4 BER of the iterative detection and decoding using proposed
OSSIC detector, LSD detector and SIC+MMSE detector for
MIMO systems with 16-QAM modulation.

Computer simulation results show that for a 4 × 4 system our proposed detector had the

same performance as the MAP detector for BPSK modulation, and 0.1 dB advantage over the

approximated MAP detector (LSD detector) for 16-QAM modulation at BER = 10−4.
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CHAPTER 5. DIVERSITY AND MULTIPLEXING TRADEOFF IN

GENERAL FADING CHANNELS

5.1 Introduction

For a wireless link, multiple antennas at both transmitter and receiver can be used to

increase the amount of diversity or the number of degrees of freedom. In a seminal work by

Zheng and Tse [124], it is shown that the two gains, namely, diversity gain and multiplexing

gain, can be simultaneously obtained for a given multi-input multi-output (MIMO) channel,

but there is a fundamental tradeoff between them.

Previous works [124, 122, 103] employed the assumption of independent and identically

distributed (i.i.d) Rayleigh fading condition to derive the optimal tradeoff result. In practical

MIMO communication scenarios, there exist many channel conditions that cannot be accu-

rately modelled by Rayleigh fading. For example, the line-of-sight (LOS) micro-cellular com-

munication channels can be modelled by the Rician distribution [99, 82, 97]. A large number of

indoor and outdoor mobile communication channels have been modelled by the Nakagami-m

distribution [75, 99, 82, 97]. The Weibull distribution also has gained popularity as a versatile

channel model for both indoor and outdoor digital communications [96, 43, 105, 16]. Fur-

thermore, due to the size-limitation at the transmit and/or receive antenna arrays the fading

correlation arises [1], which substantially affects the achievable performance of MIMO and

space-time coded systems [18, 54, 37]. Therefore, it is of theoretical interest and practical im-

portance to develop a technique to enable the calculation of optimal tradeoff in general fading

channel cases. In this work, we extend the previous results to more general fading channel

conditions, which includes Rayleigh, Rician, Nakagami-m, Weibull and Nakagami-q fading dis-

tributions as special cases. The effects of correlation and non-identical distribution among the
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MIMO channel elements, and the non-zero channel mean are also included.

Our technique for this generalization is based on the intuition that the optimal tradeoff

performance is determined by the joint probability density function (pdf) of the eigenvalues

of the Gram matrix of the MIMO channel, especially the eigenvalue behavior near zeros.

Roughly speaking, if the joint pdf of the eigenvalues near zeros can be well approximated

by a polynomial, the optimal tradeoff curve (or bounds) can be computed explicitly. This

polynomial approximation of the joint pdf becomes accurate for high average signal-to-noise

ratios (ASNRs), which is considered here to derive new tradeoff result for generalized fading

channels.

Notations: Bold letters denote random variables, vectors, or matrices; plain letters denote

the corresponding realizations or constants; Im denotes m ×m identity matrix; superscripts

(·)∗, (·)T , and (·)† denote scalar complex conjugate, vector and matrix transpose and conjugate

transpose, respectively. || · ||F denotes the Frobenius norm. Unless otherwise indicated, the

(i, j)th entry of matrix H is denoted by hij . As in [124, 103], we use bold-faced symbols to

denote random variables and matrices.

5.2 System Model

We consider a wireless link with nT transmit and nR receive antennas. The fading coefficient

hij is the complex path gain from transmit antenna j to receive antenna i. We assume that

the coefficients are i.i.d random variables, and write H = [hij ] ∈ CnR×nT . More general cases

(non-i.i.d fading) will be explored in Section 5.6. H is assumed to be known at the receiver,

but unknown at the transmitter. We also assume that H remains constant within a block of

l symbols, then the received data within one block can be written as

Y =

√
ρ

nT
HX + W , (5.1)

where X ∈ CnT×l is the transmitted codeword, the additive noise matrix W has independent

circular symmetric complex Gaussian distributed entries wij ∼ CN (0, 1), and ρ controls the

signal-to-noise ratio (SNR).
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pdf a b c t β

Rayleigh 1
πΩe

− |h|2

Ω
1

πΩ
1
Ω 0 0 2

Rician 1
πΩe

−
|h−µ|2

Ω
1

πΩ
1
Ω µ 0 2

Nakagami-m mm|h|2m−2

πΩmΓ(m) e
−m|h|2

Ω
mm

πΩmΓ(m)
m
Ω 0 2m− 2 2

Weibull αΩ−α

2π |h|α−2e−(
|h|
Ω

)α αΩ−α

2π Ω−α 0 α− 2 α

Nakagami-q (1+q2)
2πqΩ I0(

(1−q4)|h|2

4q2Ω
)e

− (1+q2)2

4q2Ω
|h|2

See Section 5.6.1

Table 5.1 Pdf of different fading channels.

We find that the pdf of the complex-valued fading coefficient hij for many fading types

may be written as

ph(h) = a|h|te−b|h−c|β , (5.2)

where a > 0, b > 0, β > 0, t ∈ R, and c ∈ C are constants. This model is valid for

many frequently used fading channels, including Rayleigh, Rician, Nakagami-m, Weibull, and

Nakagami-q distribution. The corresponding parameters a, b, c, t and β are listed in Table 5.1.

We also make the following assumptions:

• For Nakagami-m, Weibull and Nakagami-q fading channels, the amplitude and the phase

of fading coefficients are independent, and the phase is uniformly distributed over [0, 2π);

• The average power of fading channel coefficients is normalized to 1, i.e., E{tr[H †H ]} =

nRnT ;

• t > 0, i.e., m > 1 for the Nakagami-m fading channel, α > 2 for Weibull fading channel,

and 0 < q 6 1 for the Nakagami-q fading channel.

Since H has i.i.d elements, the pdf of H can be written as

pH (H) =

nR∏

i=1

nT∏

j=1

a|hij |t · exp
(
− b|hij − c|β

)
. (5.3)

A codebook C of rateR bits per channel use (bpcu) has |C| = ⌊2Rl⌋ codewords {X(1), ...,X(|C|)}.

We further assume a power constraint on the codebook C:

1

|C|

|C|∑

i=1

||X(i)||2F 6 nT l, (5.4)
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so that ρ in (5.1) is the average transmit power, regardless of the value of nT .

The following definitions were introduced in [124]:

Definition 1: The special symbol
.
= denotes exponential equality, i.e., we write f(ρ)

.
= ρb

to denote

lim
ρ→∞

log f(ρ)

log ρ
= b, (5.5)

and >̇, 6̇ are similarly defined.

Definition 2: A scheme is a family of codes {C(ρ)} of block length l, one at each transmit

power level. R(ρ) is the rate of the code C(ρ).

Definition 3: A scheme {C(ρ)} is said to achieve spatial multiplexing gain r and diversity

gain d if the data rate R(ρ) and the average error probability Pe(ρ) satisfy the following

equalities, respectively,

lim
ρ→∞

R(ρ)

log ρ
= r, (5.6)

Pe(ρ)
.
= ρ−d. (5.7)

For each r, we define d∗(r) as the supremum of the diversity gain achieved over all schemes.

5.3 Mathematical Prerequisite on Random Matrices

In this section, we present some important results on random matrices without proof.

Interested readers can refer to [74] and [27].

For a nonsingular matrix H ∈ Cm×n (m 6 n) with pdf pH (H), there is a unique LQ

factorization

H = LQ , (5.8)

where L ∈ Cm×m is upper-triangular with positive diagonal elements and Q ∈ Cm×n with

QQ† = Im. If H is random, the pdf of L can be written as

pL(L) =
m∏

i=1

l2n−2i+1
ii ·

∫

Vm,n

pH (LQ)dQ, (5.9)

where Vm,n is the complex Stiefel manifold, i.e., a sub-manifold of m by n complex matrices

Q such that QQ† = Im, and the dimension of Vm,n is 2mn−m2.
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Let

W ≡ HH † = LL†, (5.10)

then the pdf of W is

pW (W ) =

(
2−m

m∏

i=1

l2i−2m−1
ii pL(L)

) ∣∣∣∣∣
LL†=W

=

(
2−m|detW |n−m ·

∫

Vm,n

pH(LQ)dQ

)∣∣∣∣∣
LL†=W

.

(5.11)

Since H is nonsingular, W ∈ Cm×m has full rank of m. Thus, there is a unique eigenvalue

decomposition of W as

W = UΛU †, (5.12)

if we assume the diagonal elements of Λ are ordered non-decreasingly and the first row of the

unitary matrix U is real and non-negative. Then, we have the pdf of Λ as

pΛ(Λ) =
1

(2π)m

∏

i<j

(λi − λj)
2 ·
∫

Vm,m

pW (UΛU †)dU. (5.13)

The factor 1
(2π)m comes from the fact that we assume the first row of U is non-negative and

integrate U over the whole manifold Vm,m.

We know that

LL† =
(
UΛ1/2

)(
UΛ1/2

)†
,

and L is unique for a given H , hence there is a unique unitary matrix Q1 ∈ Cm×m for the

given H such that

L = UΛ1/2Q1. (5.14)

Combining (5.11), (5.13) and (5.14), we obtain

pΛ(Λ) =
1

(4π)m

(
m∏

i=1

λn−m
i

)
·
∏

i<j

(λi − λj)
2 ·
∫

Vm,m

∫

Vm,n

pH(UΛ1/2Q1Q)dQdU

=
1

(4π)m

(
m∏

i=1

λn−m
i

)
·
∏

i<j

(λi − λj)
2 ·
∫

Vm,m

∫

Vm,n

pH(UΛ1/2Q)dQdU,

(5.15)

the second equality follows from the fact that the measure defined by dQ is invariant under

unitary transformations.
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5.4 Outage Formulation

Consider a non-ergodic fading channel model

yi =

√
ρ

nT
Hxi +wi, for i = 1, 2, . . . ,∞, (5.16)

where xi ∈ CnT , yi ∈ CnR , and wi ∈ CnR are the transmitted data, received data, and additive

white Gaussian noise at time i. The channel matrix H is chosen randomly but is held fixed

for all time.

An outage is defined as the event that the mutual information of this channel does not

support a target data rate R [102]. Without loss of optimality, the input distribution can be

taken to be complex Gaussian with a covariance matrix Cxx, then

I(xi;yi|H = H) = log det

(
InR +

ρ

nT
HCxxH

†

)
. (5.17)

Optimizing over all input distributions that satisfy the average power constraint, the outage

probability is

Pout(R) = inf
Cxx>0,Tr(Cxx)6nT

P

[
log det

(
InR +

ρ

nT
HCxxH

†

)
< R

]
, (5.18)

where the probability is taken over the random channel matrix H . It is shown in [124] that

Pout(R)
.
= P

[
log det(InR + ρHH †) < R

]
. (5.19)

We assume, without loss of generality, that nR 6 nT . This is because

log det

(
InR +

ρ

nT
HH †

)
= log det

(
InT +

ρ

nT
H †H

)
.

hence, swapping nR and nT has no effect on the mutual information, except a scaling factor

of nT/nR on ρ, which can be ignored on the scale of interest.

Since the elements of H are independent, H has full rank of nR with probability one. Let

λ1 6 λ2 6 . . . 6 λnR be the nonzero eigenvalues of HH † and R = r log ρ, we have

Pout(r log ρ)
.
= P

[
log det(InR + ρHH †) < R

]
= P

[
nR∏

i=1

(1 + ρλi) < ρr

]
.
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Let λi = ρ−αi and α = [α1, . . . , αnR ]. It is proved in [124] that

Pout(r log ρ)
.
= P

[
∑

i

(1 − αi)
+ < r

]
=

∫

A
pα(α)dα, (5.20)

where (x)+ denotes max{0, x} and A = {α :
∑

i(1 − αi)
+ < r}.

Using (5.15) and change of variables, we obtain the joint pdf of α as

pα(α) =

(
log ρ

4π

)nR
(

nR∏

i=1

ρ−(nT−nR+1)αi

)
·
∏

i<j

(ρ−αi − ρ−αj )2 ·
∫

VnR,nR

∫

VnR,nT

pH (UDQ)dQdU,

(5.21)

where D = diag[ρ−α1/2, . . . , ρ−αnR/2] and

pH (UDQ) =


 ∑

|κ|=2nRnT

c(κ,U,Q)[ρ−α1/2, ..., ρ−αnR /2]κ




t/2

anRnT · exp
(
− b

nR∑

i=1

nT∑

j=1

|hij − c|β
)
,

(5.22)

where

• κ = [k1, ..., knR ] is a partition of 2nRnT , i.e., |κ| =
∑nR

i=1 ki = 2nRnT , and ki is a non-

negative integer for all i;

• [ρ−α1/2, ..., ρ−αnR /2]κ ≡∏nR
i=1 ρ

−αiki/2;

• c(κ,U,Q) is the coefficient of the item [ρ−α1/2, ..., ρ−αnR /2]κ in the expansion of
∏nR

i=1

∏nT
j=1 |hij |2,

where H = [hij ] = UDQ. It is easy to check that all c(κ,U,Q)’s are real and bounded.

Define

g(ρ, U,Q, α) ≡
∑

|κ|=2nRnT

c(κ,U,Q)[ρ−α1/2, ..., ρ−αnR /2]κ. (5.23)

Combining (5.20), (5.21), and (5.22), we have

Pout(r log ρ)
.
=

∫

A

(
log ρ

4π

)nR
(

nR∏

i=1

ρ−(nT−nR+1)αi

)
·
∏

i<j

(ρ−αi − ρ−αj )2

·



∫

VnR,nR

∫

VnR,nT

anRnT (g(ρ, U,Q, α))t/2 · exp
(
− b

nR∑

i=1

nT∑

j=1

|hij − c|β
)
dQdU


 dα.

(5.24)
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Since Pout(r log ρ) → 0 as ρ → ∞, and we are only interested in the ρ exponent of Pout,

i.e.,

lim
ρ→∞

logPout(r log ρ)

log ρ
, (5.25)

thus we can make some approximations to simplify the integral. First, the term
(

log ρ
4π

)nR
has

no effect on the ρ exponent, since

lim
ρ→∞

log
(

log ρ
4π

)nR

log ρ
= 0. (5.26)

Secondly, we can ignore the outer integral over the range with any αi < 0 when ρ → ∞, and

replace the outer integral range A with A′ = A⋂Rn+
, where Rn+

is the set of real n-vectors

with nonnegative elements. Similar intuitive argument is stated in [124]. We give the rigorous

proof in Appendix 5.A.

For α ∈ A′ and ρ → ∞, |hij | approaches 0, and exp(−b|hij − c|β) approaches a constant,

which is independent of ρ for given Q and U . (g(U,Q,D))t/2 is a polynomial of ρ, where the

coefficients are functions of Q and U . The term with the highest order is ρ−nRnT tαnR/2, and

the corresponding coefficient is nonzero almost everywhere. Thus, the outage probability can

be approximated as

Pout(r log ρ)
.
=

∫

A′

nR∏

i=1

ρ−(nT−nR+1)αi ·
∏

i<j

(ρ−αi − ρ−αj )2ρ−
t
2
nRnTαnRdα. (5.27)

When αi = αj for some i and j, the integrand is zero, so we only need to consider the case that

αi’s are distinct. In this case, |ρ−αi − ρ−αj | is dominated by ρ−αj for any i < j. Therefore,

Pout(r log ρ)
.
=

∫

A′

ρ−{
∑nR
i=1(nT−nR+2i−1)αi+

t
2
nRnTαnR}dα. (5.28)

Finally, as ρ → ∞, the integral is dominated by the term with the largest ρ exponent. This

heuristic calculation is made rigorous in Appendix 5.A and the result is stated in the following

theorem.

Theorem 1 (Outage Probability) For the MIMO channel defined in (5.1) and (5.3), let n =

min{nR, nT }, and the data rate be R = r log ρ (bpcu), with 0 6 r 6 n. The outage probability

satisfies

Pout(R)
.
= ρ−dout(r), (5.29)



www.manaraa.com

67

where

dout(r) = f(α∗) = inf
α∈A′

f(α), (5.30)

and

f(α) =

nR∑

i=1

(|nT − nR| + 2i− 1)αi +
t

2
nRnTαnR ,

A′ =
{
α : α1 > · · · > αn > 0,

n∑

i=1

(1 − αi)
+ < r

}
.

(5.31)

dout(r) is given by the piecewise-linear function connecting the points (k, d∗(k)), for k =

0, 1, . . . , n, where

d∗(k) =





(nR − k)(nT − k) if k = 1, . . . , n,

nRnT + t
2nRnT if k = 0.

(5.32)

Remark : Compared with the outage probability obtained for i.i.d Rayleigh fading channels in

[124], the difference arises from the coefficient of αmin{nR,nT } in dout(r), which is nR + nT − 1

for Rayleigh fading channels and nR + nT − 1 + t
2nRnT for general fading channels.

5.5 Optimal Tradeoff Curve

The outage probability provides a lower bound on the average error probability for channel

defined in (5.1), which is proved by [124, Lemma 5] for i.i.d Rayleigh fading case. Based

on Theorem 1, this result still holds for the general channel model defined in this chapter. For

convenience, we restate it as follows without proof:

Lemma 1 (Outage Bound) For the channel defined in (5.1) and (5.3), let the data rate be

scaled as R = r log ρ (bpcu). For any coding scheme, the average error probability is lower-

bounded as

Pe(ρ)>̇ρ
−dout(r), (5.33)

where dout(r) is defined in (5.30).

With Lemma 1 providing a lower bound on the average error probability, to obtain the ρ

exponent of Pe, we only need to derive an upper bound on Pe (a lower bound on the optimal

diversity gain).
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Consider at data rate R = r log ρ (bpcu),

Pe(ρ) =Pout(R)P (error|outage) + P (error, no outage)

6Pout(R) + P (error, no outage).

(5.34)

By choosing the input to be the random code from the i.i.d Gaussian ensemble, the second

term in (5.34) can be upper-bounded via a union bound [124]:

P (error, no outage)6̇

∫

Ac
pα(α)ρ−l[

∑min{nR,nT }
i=1 (1−αi)

+−r]dα. (5.35)

Notice that Ac as the integral region is more strict than (A′)c used in [124]. The ρ exponent

of the integral is stated in the following lemma and proved in Appendix 5.B.

Lemma 2 For the MIMO channel defined in (5.1) and (5.3), let n = min{nR, nT }, and the

data rate be R = r log ρ (bpcu), with 0 6 r 6 n. The average error probability when no channel

outage occurs satisfies:

P (error, no outage)6̇ρ−dG(r), (5.36)

where

dG(r) = dG(r, α∗) = inf
α∈Ac

⋂
Rn+

dG(r, α), (5.37)

and

dG(r, α) =
n∑

i=1

(2i − 1 + |nT − nR|)αi +
t

2
nRnTαn + l

( n∑

i=1

(1 − αi)
+ − r

)
,

Ac
⋂

Rn+
=

{
α : α1 > . . . > αn > 0,

n∑

i=1

(1 − αi)
+ > r

}
.

(5.38)

For convenience, we call a system with nT transmit, nR receive antennas, and a block

length l as an (nT , nR, l) system. Combining the results from Theorem 1, Lemma 1, and

Lemma 2, we can see that given a multiplexing gain r, the optimal diversity gain is bounded

by min{dG(r), dout(r)} 6 d∗(r) 6 dout(r). Whether the optimal tradeoff curve d∗(r) can be

exactly characterized or not wholly depends on the relation among nT , nR, l and t as we

conclude in Theorem 2 and Theorem 3.

Theorem 2 For an (nT , nR, l) system defined by channel model (5.1) and (5.3) with l >

nT +nR−1+nTnRt/2, the optimal tradeoff curve d∗(r) is given by the piecewise-linear function
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connecting the points (k, d∗(k)), k = 0, 1, ...,min{nR, nT }, where

d∗(k) =





(nR − k)(nT − k) if k = 1, . . . ,min{nR, nT },

nRnT + t
2nRnT if k = 0.

(5.39)

In particular, d∗max = nRnT + t
2nRnT and r∗max = min{nR, nT }

Proof: This is a direct result of Theorem 1, Lemma 1, and Lemma 2. �

Theorem 3 For an (nT , nR, l) system defined by channel model (5.1) and (5.2) with l <

nT +nR − 1+nTnRt/2, the optimal tradeoff curve d∗(r) is upper bounded by dout(r) and lower

bounded by dG(r). Let

k1 = min

{⌈
l − |nR − nT | − 1

2

⌉
,min{nR, nT } − 1

}
. (5.40)

For min{nR, nT } − k1 < r 6 min{nR, nT }, dG(r) agrees with the upper bound dout(r) ; For

0 6 r 6 min{nR, nT } − k1, dG(r) is linear with slope −l and is strictly below dout(r).

The proof of Theorem 3 is similar to the one in [124, Section IV-A], and omitted here due to

space limitation.

Remark : It is interesting to notice that the optimal tradeoff curve (or bounds) only depends

on parameter t and not on a, b, c, β. This statement also holds for non i.i.d cases as discussed

in Section 5.6.

As an example, in Figs. 5.1 -5.3, tradeoff curves are plotted for systems with nR = nT = 4,

i.i.d Nakagami-m fading (m = 1.5) and block length l = 1, 10, 15, compared with the curves

for i.i.d Rayleigh case. As indicated by Fig. 5.1, when the block length is short for both

Nakagami-m and Rayleigh cases, their lower bounds are the same but Nakagami-m case yields

a higher upper bound; When block length is long enough for Rayleigh case but still short for

Nakagami-m case, the upper and lower bounds for Rayleigh case are exactly the same while

the lower bound of Nakagami-m case is no less than that of Rayleigh case as shown in Fig. 5.2.

Fig. 5.3 illustrates the tradeoff curves when the block length is long for both cases. The upper

and lower bounds for either of the two channels are identical, thus exactly characterize the

channel. We observe that, although the Nakagami-m case has a higher tradeoff curve when
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Figure 5.1 The bounds of optimal tradeoff curves for a (4, 4, 1) system
over Rayleigh and Nakagami-m (m = 1.5) fading channels

0 < r 6 1, it yields the same result when r > 1 as the Rayleigh case. In general, different

fading models only affect the first segment of the optimal tradeoff curve (or bounds), compared

with the results in [124].

5.6 Discussion and Extension

As stated in the introduction, the optimal tradeoff curve is determined by the behavior of

pΛ(Λ) near zeros. The i.i.d fading condition assumed in the previous sections is not a necessary

condition to have pΛ(Λ) decrease in a polynomial fashion as Λ → 0, which is required to

calculate the optimal tradeoff curve explicitly by the technique we developed. In this section,

we will extend our result to some more general and practical models.

5.6.1 Nakagami-q Channel

The zeroth-order modified Bessel function of the first kind I0(x) satisfies:
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Figure 5.2 The bounds of optimal tradeoff curves for a (4, 4, 10) system
over Rayleigh and Nakagami-m (m = 1.5) fading channels

1 6 I0(x) =

∞∑

k=0

(x/2)2k

k!k!
6

(
∞∑

k=0

(x/2)k

k!

)2

= ex.

Thus for Nakagami-q model, where

ph(h) =
(1 + q2)

2πqΩ
I0

((1 − q4)|h|2
4q2Ω

)
e
−

(1+q2)2

4q2Ω
|h|2

,

we can use the parameters in Table 5.2 to construct a lower and an upper bounds on ph(h),

which are easily integrated into our framework. Therefore, the results obtained in Section 5.5

are also applicable for Nakagami-q fading channels. Note that the optimal tradeoff depends

only on the t parameters, which is 0 in this case for both lower and upper bounds. As a result,

the optimal tradeoff performance of Nakagami-q channels is the same as that of Rayleigh

channels.
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Figure 5.3 Optimal tradeoff curves for a (4, 4, 15) system over Rayleigh
and Nakagami-m (m = 1.5) fading channels

pdf a b c t β

Lower Bound (1+q2)2

2πqΩ e
−

(1+q2)

4q2Ω
|h|2 (1+q2)

2qπΩ
(1+q2)2

4q2Ω
0 0 2

Upper Bound (1+q2)
2πqΩ e−

(1+q2)
2Ω

|h|2 (1+q2)
2qπΩ

(1+q2)
2Ω 0 0 2

Table 5.2 Lower and Upper bounds on ph(h) for Nakagami-q fading chan-
nels.

5.6.2 Independent Non-Identical Distribution

As defined in (5.3), we assume that hij are i.i.d random variables. In fact, if hij’s are just

independent random variables following the same model defined in (5.2), but have different

parameters a, b, c, t and β, similar results can be drawn as stated in the following theorem.

Theorem 4 Suppose that the channel matrix H in (5.1) has independently non-identically

distributed elements hij, whose pdf has the form of

phij (h) = aij |h|tije−bij |h−cij |
βij
, (5.41)

where aij > 0, bij > 0, βij > 0, tij > 0, and cij ∈ C are constants. Then the optimal
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diversity and multiplexing tradeoff curves (or bounds) can be obtained by replacing t
2nRnT with

∑nR
i=1

∑nT
j=1 tij/2 in Theorems 2 and 3.

The outline of the proof is given as following:

1. It is easy to check that for the proofs given in the Appendices for the i.i.d case, changing

c to cij for different fading path will not affect the procedure and the result of each proof.

2. Changing a to aij for different fading path will not affect the result of each proof. When

aij ’s are constants, it is obvious. For Nakagami-q model, notice that the constructed

lower and upper bounds on ph(h) in Table 5.2 have the same parameter a which is a

constant.

3. When changing b to bij, we can use min{bij} and max{bij} to construct the upper and

lower bounds on ph(h) which have the same parameter t. Thus the results still hold.

4. When we change t to tij for different fading path, instead of constructing lower and upper

bound on g(ρ, U,Q, α), we can construct those bounds for each |hij |tij with the similar

method. And this will results in the replacement of t
2nRnT by

∑nR
i=1

∑nT
j=1 tij/2 in each

proof.

5. It is easy to verify that changing β to βij for different fading path will not alter the proof

of ρ exponent of I1 in Appendix 5.A. For the ρ exponent of I2 in Appendix 5.A, notice

that

|hij |βij >





|hij |minij βij − 1 |hij | < 1

|hij |minij βij |hij | > 1

,

so we have
∑

i,j

( |hij |
2

)βij
>
∑

i,j

( |hij |
2

)mini,j βij − nRnT

Then applying (5.56), the result of I2 still holds in this case. Similar argument is also

applicable for the proof of Lemma 2.
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5.6.3 Effect of Correlation

We assume that the correlation can be decoupled as the transmit correlation and receive

correlation, i.e. H = Σ
1/2
1 H̃Σ

1/2
2 , where H̃ has independent elements with pdf p

H̃
(·), Σ1 is

the receive covariance matrix, and Σ2 is the transmit covariance matrix. Assume that both

covariance matrices are of full rank. Notice

pH (H) = (det Σ1)
−nT (detΣ2)

−nRp
H̃

(Σ
−1/2
1 HΣ

−1/2
2 ), (5.42)

then combining (5.42) with (5.15), we have

pΛ(Λ) =det(Σ1)
−nT det(Σ2)

−nR(4π)−nR ·
nR∏

i=1

λnT−nR
i ·

∏

i<j

(λi − λj)
2

·
∫

Vm,m

∫

Vm,n

p
H̃

(Σ
−1/2
1 UΛ1/2QΣ

−1/2
2 )dQdU.

(5.43)

For Σ
−1/2
1 UΛ1/2QΣ

−1/2
2 , each element of it is still a linear combination of [ρ−α1/2, ..., ρ−αnR/2]κ

and the coefficients are bounded. Thus we expect the optimal tradeoff curve not to change,

which is proved in Appendix 5.C. The result is summarized in the following theorem.

Theorem 5 Suppose that the channel matrix H in (5.1) can be decoupled as Σ1H̃Σ2, where

H̃ has independent elements distributed according to (5.41), Σ1 and Σ2 are the covariance

matrices at the receiver and the transmitter, respectively, both of full rank. Then dout(r) and

dG(r) of this channel are the same as those of a MIMO system with channel H̃. The optimal

diversity and multiplexing tradeoff curve (or bounds) for channel H is the same as that for H̃,

which can be characterized using Theorem 4.

5.6.4 Effect of Channel Mean

In Table 5.1, the only model with a non-zero channel mean is the Rician channel. For both

Rayleigh and Rician channels, the parameter t is 0. Therefore, for a fading coefficient hij with

complex Gaussian distribution, its channel mean will not affect the optimal tradeoff curve of

the whole channel.
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For other models where tij 6= 0, adding a channel mean hij , i.e., hij = h̃ij + hij, where

p
h̃ij

(h) = aij|h|tije−bij |h−0|βij , results in the pdf of the fading coefficient hij as

phij (h) = aij |h− hij|tije−bij |h−hij |
βij
.

Notice when |h| approaches 0, phij (h) will approach a constant instead of |h|tij in the

zero-mean case. Thus this tij will not be counted in the term
∑nR

i=1

∑nT
j=1 tij/2 in the optimal

tradeoff as shown in Section 5.6.2. Therefore, for the channel H with a channel mean H, we

should replace t
2nRnT in Theorems 2 and 3 by

1

2

∑

(i,j)∈I

tij , (5.44)

where I =
{
(i, j) : hij = 0

}
. In other words, non-zero channel mean of a particular path will

degrade this path into a Rayleigh fading path in the calculation of the optimal tradeoff curve

(or bounds). The observation here is that the non-zero channel mean will not help improve

performance in the sense of optimal diversity-multiplexing tradeoff. We summarize this result

in the next theorem and prove it in Appendix 5.D.

Theorem 6 Suppose that the channel matrix H in (5.1) has the form of H = H+H̃, where H̃

has independent elements distributed according to (5.41), and E{H̃} = 0nR×nT . Then dout(r)

and dG(r) of channel H are the same as those of a MIMO system with channel matrix B with

independent elements such that:

• If H ij 6= 0, Bij has a zero mean complex Gaussian distribution;

• if H ij = 0, Bij has the same distribution as H̃ij.

The optimal diversity and multiplexing tradeoff (or bounds) for channel H is the same as that

for B, which can be characterized using Theorem 4.

5.6.5 Effect of Combination of Channel Mean and Channel Correlation

In fact we can generalize the result in Section 5.6.3 and Section 5.6.4 in one theorem. The

proof is similar thus omitted here.
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Theorem 7 Suppose that the channel matrix H in (5.1) has the form of H = H + Σ1H̃Σ2,

where H is the channel mean; Σ1 and Σ2 are the covariance matrices at the receiver and the

transmitter, respectively, both of full rank; H̃ has independent elements distributed according

to (5.41), and E{H̃} = 0nR×nT . Then dout(r) and dG(r) of channel H are the same as those

of a MIMO system with channel matrix B with independent elements such that:

• If
[
Σ−1

1 HΣ−1
2

]
ij
6= 0, Bij has a zero mean complex Gaussian distribution;

• if
[
Σ−1

1 HΣ−1
2

]
ij

= 0, Bij has the same distribution as H̃ij .

The optimal diversity and multiplexing tradeoff curve (or bounds) for channel H is the same

as that for B, which can be characterized using Theorem 4.

5.7 Summary

In this chapter, we derived the optimal multiplexing-diversity tradeoff for general MIMO

fading channels, which include different fading types as special cases. We also treated channels

with non-identical fading distributions, spatial correlation, and non-zero channel means. We

showed that for a (nR, nT , l) system with nR receive antennas, nT transmit antennas, and

encoding block length l, the optimal tradeoff is determined by a set of parameters tij , i ∈ [1, nR],

j ∈ [1, nT ], one for each fading path, describing the near-zero (or deep-fade) behavior of the

probability density function of the fading path. The i.i.d Rayleigh fading case considered

in [124] corresponds to tij = 0, ∀i, j. Compared with the results in [124] for i.i.d. Rayleigh

channels, the optimal tradeoff in the general case may be different only on first segment, i.e. for

multiplexing gain r ∈ [0, 1), which suggests that for r ≥ 1, the optimal tradeoff depends only

on the MIMO system array structure, rather than the channel fading types. We proved that

under certain full-rank assumptions spatial correlation has no effect on the the optimal tradeoff.

We also argued that non-zero channel means in general are not beneficial for multiplexing-

diversity tradeoff. These results could facilitate a more comprehensive understanding of the

limiting performance of MIMO systems under generalized fading conditions. The techniques
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we developed can also be used to analyze the diversity-multiplexing tradeoff in multiple-access

and broadcast channels [103] [115].

5.8 Appendix 5.A Proof of Theorem 1

Let A′ = A⋂Rn+
and A′′ = A⋂

(
Rn+)c

, where
(
Rn+)c

denotes the compliment of Rn+
.

Without loss of generality, we assume that nR 6 nT . Then,

Pout(r log ρ)
.
=

∫

A
pα(α)dα

.
= I1 + I2

.
= ρ−dout(r), (5.45)

where

I1 =

∫

A′

pα(α)dα, I2 =

∫

A′′

pα(α)dα,

and

pα(α) =

(
log ρ

4π

)nR nR∏

i=1

ρ−(nT−nR+1)αi ·
∏

i<j

(ρ−αi − ρ−αj )2

·



∫

VnR,nR

∫

VnR,nT

(g(ρ, U,Q, α))t/2 · anRnT · exp
(
− b

nR∑

i=1

nT∑

j=1

|hij − c|β
)
dQdU


 .

(5.46)

I. ρ exponent of I1

First, we study the ρ exponent of I1. We will construct an upper bound and a lower bound

on I1, and show that they have the same ρ exponents.

Upper bound

Notice that

1. exp(−b∑nR
i=1

∑nT
j=1 |hij − c|β) 6 1.

2. Since UU † = I and QQ† = I, it is clear that, ∃ 0 < N2 < ∞ (independent of Q and U

when nR and nT are fixed), such that
∑

|κ|=2nRnT
|c(κ,U,Q)| < N2. Using the fact that

∑nR
i=1 ki = 2nRnT and α1 > α2 > . . . > αnR , we have

[ρ−α1/2, . . . , ρ−αnR/2]κ = ρ−
∑nR
i=1 αiki/2 6 ρ−nRnTαnR .
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Then

g(ρ, U,Q, α) =
∑

|κ|=2nRnT

c(κ,U,Q)[ρ−α1/2, ..., ρ−αnR/2]κ

6 ρ−nRnTαnR ·
∑

|κ|=2nRnT

|c(κ,U,Q)|

< N2 · ρ−nRnTαnR .

(5.47)

Based on these observations, the upper bound can be constructed as

I16̇

∫

A′

nR∏

i=1

ρ−(nT−nR+1)αi
∏

i<j

(ρ−αi − ρ−αj )2ρ−
t
2
nRnTαnR

(∫

VnR,nR

∫

VnT ,nR

dQdU

)
dα

6̇

∫

A′

nR∏

i=1

ρ−(nT−nR+1)αi
∏

i<j

(ρ−αj − 0)2ρ−
t
2
nRnTαnRdα

.
=

∫

A′

ρ−f(α)dα,

(5.48)

where

f(α) =

nR∑

i=1

(nT − nR + 2i− 1)αi +
t

2
nRnTαnR . (5.49)

Following the same method used to prove [124, (44)], we obtain

∫

A′

ρ−f(α)dα
.
= ρ−f(α∗), (5.50)

where α∗ = arg infA′ f(α).

Lower bound

Notice that

1. Since H = UDQ, α1 > α2 > . . . > αnR , and U ,Q are unitary matrices, ∃ 0 < M < ∞

(independent of U and Q when nR, nT are fixed), such that |h|βij =
∣∣∑nR

l=1 uilqljρ
−αl/2

∣∣β 6

M · ρ−αnRβ/2. Notice

|hij − c|β 6(|hij | + |c|)β 6 2β(|hij |β + |c|β),

then, the third term in the double integral of (5.46) can be lower bounded as

exp(−b
nR∑

i=1

nT∑

j=1

|hij − c|β) > exp(−b2β
nR∑

i=1

nT∑

j=1

|hij |β − b2βnRnT |c|β)

> exp
(
−bMnrntρ

−αnRβ/2
)

exp(−b2βnRnT |c|β).
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For α ∈ A′, ρ−αiβ/2 6 1 when ρ > 1, thus

exp(−b
nR∑

i=1

nT∑

j=1

|hij − c|β) > exp(−bMnrnt) exp(−b2βnRnT |c|β). (5.51)

2. For any δ > 0, define

S(δ) ≡ {α : |αi − αj | > δ,∀i 6= j}, (5.52)

then A′
⋂S(δ) ↑ A′ as δ → 0.

3. For some 0 < ǫ < 1
nRnT

, define

V ′
nR,nT

(ǫ) =
{
Q ∈ CnR×nT : QQ† = InR , |qnRj| > ǫ, j = 1, ..., nT

}
,

V ′′
nR,nR(ǫ) =

{
U ∈ CnR×nR : UU † = InR , |uinR | > ǫ, i = 1, ..., nR

}
,

(5.53)

and κ0 = [0, ..., 0, 2nRnT ]. Given Q ∈ V ′
nR,nT

(ǫ) and U ∈ V ′′
nR,nR

(ǫ), the coefficient of

ρ−nRnTαnR in the expansion of g(ρ, U,Q, α) can be expressed as

c(κ0, U,Q) =

nT∏

j=1

nR∏

i=1

|qnRj |2|uinT |2 > ǫ4nRnT .

For given α ∈ S(δ), ∃ 0 < N3 <∞ (independent of Q and U when nR and nT are fixed)

such that
∣∣∣

∑

|κ|=2nRnT ,κ 6=κ0

c(κ,U,Q)[ρ−α1/2, . . . , ρ−αnR/2]κ
∣∣∣

6
∑

|κ|=2nRnT ,κ 6=κ0

∣∣∣c(κ,U,Q)
∣∣∣ · [ρ−α1/2, . . . , ρ−αnR/2]κ

6N3 · ρ−nRnTαnR · ρ−δ/2.

Then, we obtain a lower bound on g(ρ, U,Q, α) for given Q ∈ V ′
nR,nT

(ǫ) and U ∈ V ′′
nR,nR

(ǫ)

as

g(ρ, U,Q, α) =c(κ0, U,Q)ρ−nRnTαnR +
∑

|κ|=2nRnT ,κ 6=κ0

c(κ,U,Q)[ρ−α1/2, . . . , ρ−αnR/2]κ

>c(κ0, U,Q)ρ−nRnTαnR −
∣∣∣

∑

|κ|=2nRnT ,κ 6=κ0

c(κ,U,Q)[ρ−α1/2, . . . , ρ−αnR/2]κ
∣∣∣

>ρ−nRnTαnR

(
ǫ4nRnT −N3 · ρ−δ/2

)
when ρ > 1.

(5.54)
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It is true that ∀δ > 0, ǫ4nRnT −N3 · ρ−δ/2 > 0, when ρ >
(

N3

ǫ4nRnT

)2/δ
.

Lemma 3 Define the topological metric/distance in the complex Stiefel manifold Vm,n as

d(Q1, Q2) = ||Q1 −Q2||F , for Q1, Q2 ∈ Vm,n.

∀Q0 ∈ Vm,n and ∀r > 0, the volume of a ball centered at Q0 with radius r is always positive.

i.e., ∫

d(Q,Q0)6r
dQ > 0

Proof: First, due to the invariant property of dQ, the volume does not depend on the

center of the ball. Second, when the distance is defined as the geodesic distance instead, a

positive lower bound of the volume of a ball is given in [50, (42)–(46)]. Finally, the distances

under these two definitions are locally equivalent [50, (21)], which completes the proof. �

With the assistance of Lemma 3, next we show that both V ′
nR,nT

(ǫ) and V ′′
nR,nR

(ǫ) have

positive volumes. We can find a U0 ∈ VnR,nR with non-zero elements on its last column, and set

ǫ1 half the minimum modulus of the elements of the last column of U0. Similarly we can find

a Q0 ∈ VnR,nT with non-zero elements on its last row, and set ǫ2 half the minimum modulus

of the elements of the last row of Q0. Let ǫ = min{ǫ1, ǫ2, 1/(nRnT )}. Then, we can construct

a ball Bu centered at U0 with sufficient small radius 0 < r 6 ǫ, such that Bu is a subset of

V ′′
nR,nR

(ǫ). To see this, ∀U ∈ Bu, ‖U0 − U‖F 6 r. Thus,for 0 < r 6 ǫ, ∀1 6 i 6 nR

r >
∣∣[u0]inR − uinR

∣∣ >
∣∣[u0]inR

∣∣− |uinR | > 2ǫ− |uinR |,

then we have |uinR | > 2ǫ − r > ǫ, i.e., U ∈ V ′′
nR,nR(ǫ). Since Bu ⊆ V ′′

nR,nR(ǫ), by Lemma 3,

Vol(V ′′
nR,nR(ǫ)) > Vol(Bu) > 0. Similarly Vol(V ′

nR,nT (ǫ)) > 0.
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Using (5.51), (5.52), (5.53) and (5.54), we obtain a lower bound on I1as

I1>̇

∫

A′
⋂

S(δ)

nR∏

i=1

ρ−(nT−nR+1)αi
∏

i<j

(ρ−αi − ρ−αj )2
[ ∫

V ′′
nR,nR

(ǫ)

∫

V ′
nR,nT

(ǫ)
(g(ρ, U,Q, α))t/2 dQdU

]
dα

>̇

∫

A′
⋂

S(δ)

nR∏

i=1

ρ−(nT−nR+1)αi
∏

i<j

((1 − ρ−δ)ρ−αj )2 · ρ−
tnRnT

2
αnR

(
ǫ4nRnT −N3 · ρ−δ/2

)t/2

·
[ ∫

V ′′
nR,nR

(ǫ)
dU ·

∫

V ′
nR,nT

(ǫ)
dQ
]
dα

.
=(1 − ρ−δ)nR

2−nR
(
ǫ4nRnT −N3 · ρ−δ/2

)t/2
∫

A′
⋂

S(δ)
ρ−f(α)dα

.
=

∫

A′
⋂

S(δ)
ρ−f(α)dα

.
=ρ− infA′ ⋂ S(δ) f(α).

By the continuity of f , infA′
⋂

S(δ) f(α) approaches f(α∗) as δ → 0. Therefore, we have

I1
.
= ρ−dout(r), (5.55)

where

dout(r) = inf
α∈A′




min{nR,nT }∑

i=1

(|nT − nR| + 2i− 1)αi +
nRnT t

2
αmin{nR,nT }


 ,

and

A′ =

{
α : α1 > · · · > αmin{nR,nT } > 0,

∑

i

(1 − αi)
+ < r

}
.

II. ρ exponent of I2

Next, we prove that the ρ exponent of I2 is no less than the one of I1. The range of r we

need to consider is 0 6 r 6 nR. Since αi are arranged in non-increasing order, we can partition

A′′ as

A′′ =

nR−1⋃

q=1

(
A
⋂

Bq

)
,

where Bq = {α : α1, ..., αq > 0, αq+1, ..., αnR < 0}. Notice that B0 is the set in which ∀i, αi < 0,

then A⋂B0 = ∅. Therefore,

I2 =

nR−1∑

q=1

I2,q,
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where I2,q =
∫
A
⋂

Bq
pα(α)dα.

Notice that:

1.

|hij − c|β > 2−β |hij |β − |c|β ,

Further,

∑

i,j

|hij |β =
∑

i,j

(|hij |2)β/2 >





(
∑

i,j |hij |2)β/2 0 < β < 2

nRnT

(∑
i,j

|hij |
2

nRnT

)β/2
β > 2

, (5.56)

and

(∑

i,j

|hij |2
)β/2

=
[
tr(HH†)

]β/2
=
( nR∑

i=1

ρ−αi
)β/2

>
1

nR

nR∑

i=1

ρ−αiβ/2, (5.57)

Thus ∃ 0 < N1 <∞, such that

exp
(
− b

nR∑

i=1

nT∑

j=1

|hij − c|2
)

6 exp
(
− bN1

nR∑

i=1

ρ−αiβ/2
)

exp(bnRnT |c|β).

2. By (5.47), ∃ 0 < N2 <∞ such that g(ρ, U,Q, α) < N2 · ρ−nRnTαnR

3. N1 and N2 are independent of Q and U when nR ,nT and β are fixed.

4. when r 6 nR − q, A⋂Bq = ∅

Let αq
1 = {α1, . . . , αq} and dαq

1 = dα1 . . . dαq. Based the above observations, when r >

nR − q, set δ = r − nR + q, then I2,q can be upper bounded as

I2,q =

∫

A
⋂

Bq

pα(α)dα

6̇

∫

A
⋂

Bq

[ nR∏

i=1

ρ−(nT−nR+1)αi · e−bN1ρ−αiβ/2
]
·
∏

i<j

(ρ−αj − 0)2 · ρ− t
2
nRnTαnRdα

.
=

∫

A
⋂

Bq

nR∏

i=1

[
ρ−(nT−nR+2i−1)αi+

t
2
nRnTαnR · e−bN1ρ−αiβ/2

]
dα.

For αi > 0, e−bN1ρ−αiβ/2 6 1. Since

A
⋂

Bq =
{
α : α1, . . . , αq > 0, αq+1, . . . , αnR < 0,

q∑

i=1

(1 − αi)
+ < δ +

nR∑

i=q+1

αi

}

⊆ Bq

⋂{
α :

q∑

i=1

(1 − αi)
+ < δ

}
,
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then

I2,q6̇C(q)

∫

A1
q(δ)

ρ−
∑q
i=1(nT−nR+2i−1)αidαq

1, (5.58)

where

C(q) =

∫ 0

−∞
ρ−(nR+nT−1+ t

2
nRnT )αnR · e−bN1ρ−αnRβ/2dαnR

·
nR−1∏

i=q+1

∫ 0

−∞
ρ−(nT−nR+2i−1)αie−bN1ρ−αiβ/2dαi,

(5.59)

and

A1
q(δ) = {αq

1 : α1 > . . . αq > 0,

q∑

i=1

(1 − αi)
+ < δ}. (5.60)

Changing the integral variables αi to λi = ρ−αi , it turns out that C(q) does not affect the ρ

exponent of I2,q.

Lemma 4 Without loss of generality, we assume that nR 6 nT . ∀δ > 0 and ∀q ∈ {1, 2, ..., nR−

1}, the following two inequalities hold:

∫

A1
q(δ)

ρ−
∑q
i=1(nT−nR+2i−1)αidαq

1 6̇ ρ−dout(nR−q+δ), (5.61)

∫

A2
q(δ)

ρ−
∑q
i=1(nT−nR+2i−1)αiρ−l[

∑q
i=1(1−αi)+−δ]dαq

1 6̇ ρ−dG(nR−q+δ), (5.62)

where dout(·), dG(·), A1
q(δ) and A2

q(δ) are defined in (5.31), (5.38), (5.60) and (5.66) respec-

tively.

Proof:

1. Define

fq(α
q
1) =

q∑

i=1

(nT − nR + 2i− 1)αi = f(α)|αq+1=...=αnR=0,

where f(α) is defined in (5.31). Using the fact that

{α : αq
1 ∈ A1

q(δ), αq+1 = . . . = αnR = 0}

⊆{α : α1 > . . . > αnR > 0,
∑

i

(1 − αi)
+ < nR − q + δ}

=A′ with r = nR − q + δ,
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where A′ is defined in (5.31), we have

inf
A1
q(δ)

fq(α) > inf
A′
f(α) = dout(nR − q + δ).

Thus

∫

A1
q(δ)

ρ−
∑q
i=1(nT−nR+2i−1)αidαq

1
.
= ρ

− inf
A1
q(δ)

fq(α)
6̇ρ−dout(nR−q+δ).

2. Define

dG,q(r, α
q
1) =

q∑

i=1

(nT − nR + 2i− 1)αi + l
( q∑

i=1

(1 − αi)
+ − r + nR − q

)

= dG(r, α)|αq+1=...=αnR=0,

where dG(r, α) is defined in (5.38). Using the fact that

{α : αq
1 ∈ A2

q(δ), αq+1 = . . . = αnR = 0}

⊆{α : α1 > . . . > αnR > 0,
∑

i

(1 − αi)
+ > nR − q + δ}

=Ac
⋂

Rn+
R with r = nR − q + δ,

we have

inf
A2
q(δ)

dG,q(nR − q + δ, αq
1) > inf

Ac
⋂

R
n+
R

dG(nR − q + δ, α) = dG(nR − q + δ).

Thus

∫

A2
q(δ)

ρ−
∑q
i=1(nT−nR+2i−1)αiρ−l[

∑q
i=1(1−αi)

+−δ]dαq
1
.
= ρ

− inf
A2
q(δ)

dG,q(nR−q+δ,αq1)6̇ρ−dG(nR−q+δ).

�

With the assistance of Lemma 4, we obtain

I2,q6̇





ρ−∞ r 6 nR − q,

ρ−dout(r) r > nR − q .

Now, we can conclude that the ρ exponent of I2,q is no less than the ρ exponent of I1, and

therefore the ρ exponent of I2 is no less than the one of I1.
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5.9 Appendix 5.B Proof of Lemma 2

Without loss of generality, we assume that nR 6 nT . The range of r we need to consider

is 0 6 r 6 nR. Since αi are arranged in non-increasing order, we can partition Ac as

Ac =
(
Ac
⋂

Rn+
R

)⋃




nR−1⋃

q=0

(
Ac
⋂

Bq

)


 ,

where Bq = {α : α1, ..., αq > 0, αq+1, ..., αnR < 0}, then [cf. (5.35)]

P (error,no outage)6̇

∫

Ac
pα(α)ρ−l[

∑nR
i=1(1−αi)

+−r]dα,= J1 +

nR−1∑

q=0

J2,q,

where

J1 =

∫

Ac
⋂

Rn+
R

pα(α)ρ−l[
∑nR
i=1(1−αi)+−r]dα,

J2,q =

∫

Ac
⋂

Bq

pα(α)ρ−l[
∑nR
i=1(1−αi)+−r]dα.

Using the similar method in Appendix 5.A, it is easy to check that:

J1
.
=ρ−dG(r),

where dG(r) is defined in Lemma 2. Next we will show that ∀q ∈ {0, 1, ..., nR − 1}, the ρ

exponent of J2,q is no less than that of J1. To be more specific:

J2,q6̇





ρ−l(nR−q−r)−dG(nR−q) r 6 nR − q,

ρ−dG(r) r > nR − q .

(5.63)

We use the observations obtained in Appendix 5.A to construct the upper bound of J2,q as

follows.

• When r 6 nR − q,

Ac
⋂

Bq =
{
α : α1, . . . , αq > 0, αq+1, . . . , αnR < 0,

q∑

i=1

(1 − αi)
+ > r − (nR − q) +

nR∑

i=q+1

αi

}

⊆ Bq

⋂{
α :

q∑

i=1

(1 − αi)
+ > 0

}
,

(5.64)
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then following the same procedure to obtain (5.58) in Appendix 5.A, we can upper bound

J2,q as

J2,q6̇ρ
−l(nR−q−r)C(q) ·

∫

A2
q(0)

ρ−
∑nR
i=1(nT−nR+2i−1)αiρ−l[

∑q
i=1(1−αi)

+−0]dαq
1, (5.65)

where C(q) is defined in (5.59) and A2
q(δ)is defined as

A2
q(δ) = {αq

1 : α1 > . . . αq > 0,

q∑

i=1

(1 − αi)
+ > δ}. (5.66)

Here, we have used the fact that for αi < 0 and ρ > 1, ρlαi 6 1. For q = 0, we set the

integral in (5.65) to be 1.

As shown before, C(q) does not affect the ρ exponent. For the integral in (5.65), it is

exponentially less than or equal to ρ−dG(nR−q) by Lemma 4. This completes the proof of

the first part in (5.63).

• When r > nR − q, set δ = r − nR − q. Using (5.64), we have

Ac
⋂

Bq = (Ac
⋂

Bq)
⋂{

α :

q∑

i=1

(1 − αi)
+ > 0

}

= (Ac
⋂

Bq)
⋂[{

α :

q∑

i=1

(1 − αi)
+ > δ

}⋃{
α :

q∑

i=1

(1 − αi)
+ < δ

}]

=
[
Ac
⋂

Bq

⋂
Dq,δ

]⋃[
Ac
⋂

Bq

⋂
Dc

q,δ

]
,

where Dq,δ =
{
α :
∑q

i=1(1 − αi)
+ < δ

}
. For α ∈ Ac

⋂Bq
⋂Dq,δ, use the following upper

bound:

ρ−l[
∑nR
i=1(1−αi)

+−r] 6 1

For α ∈ Ac
⋂Bq

⋂Dc
q,δ, use the following upper bound:

ρ−l[
∑nR
i=1(1−αi)

+−r] 6 ρ−l[
∑q
i=1(1−αi)

+−δ]
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then we can upper bound J2,q as

J2,q 6

∫

Ac
⋂

Bq
⋂

Dq,δ

pα(α)dα +

∫

Ac
⋂

Bq
⋂

Dcq,δ

pα(α)ρ−l[
∑nR
i=1(1−αi)

+−r]dα

6̇C(q)

∫

A1
q(δ)

ρ−
∑q
i=1(nT−nR+2i−1)αidαq

1

+ C(q)

∫

A2
q(δ)

ρ−
∑q
i=1(nT−nR+2i−1)αiρ−l[

∑q
i=1(1−αi)+−δ]dαq

1

.
=

∫

A1
q(δ)

ρ−
∑q
i=1(nT−nR+2i−1)αidαq

1

+

∫

A2
q(δ)

ρ−
∑q
i=1(nT−nR+2i−1)αiρ−l[

∑q
i=1(1−αi)

+−δ]dαq
1

6̇ρ−dout(nR−q+δ) + ρ−dG(nR−q+δ) by Lemma 4

.
=ρ−dout(r) + ρ−dG(r)

.
=ρ−dG(r) since dG(r) 6 dout(r).

where C(q), A1
q(δ), and A2

q(δ) are defined in (5.59), (5.60) and (5.66), respectively. This

completes the proof of the second part in (5.63).

5.10 Appendix 5.C Proof of Theorem 5

Without loss of generality, we assume that nR 6 nT . Recall that

pΛ(Λ) =det(Σ1)
−nT det(Σ2)

−nR(4π)−nR ·
nR∏

i=1

λnT−nR
i ·

∏

i<j

(λi − λj)
2

·
∫

VnR,nR

∫

VnR,nT

p
H̃

(Σ
−1/2
1 UΛ1/2QΣ

−1/2
2 )dQdU.

Since each element of (Σ
−1/2
1 UΛ1/2QΣ

−1/2
2 ) is a linear combination of [ρ−α1/2, ..., ρ−αnR /2]κ,

and the corresponding coefficients are bounded, little modification is needed for the proof of

the upper bound of I1 in Appendix 5.A to be applicable for the correlated case.

For the lower bound of I1, we only need to prove that the observation 3) in Appendix 5.A

still holds. For some 0 < ǫ < 1
nRnT

, define

Q(ǫ) =
{
Q ∈ CnR×nT : QQ† = InR ,

∣∣[QΣ
−1/2
2 ]nRj

∣∣ > ǫ, j = 1, ..., nT

}
,

U(ǫ) =
{
U ∈ CnR×nR : UU † = InR ,

∣∣[Σ−1/2
1 U ]inR| > ǫ, i = 1, ..., nR

}
,
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then it is enough to show that Vol(Q(ǫ)) > 0 and Vol(U(ǫ)) > 0.

Consider a particular U0 in VnR,nR , whose last column is parallel to Σ
1/2
1 (1, 1, ..., 1)T , then

each element of the last column of (Σ
−1/2
1 U0) is non-zero. Set ǫ1 half the minimum modulus of

the elements of the last column of Σ
−1/2
1 U0. Similarly, we can find a Q0 such that each element

of the last raw of QΣ
−1/2
2 is non-zero, and set ǫ2 half the minimum modulus of the elements

of the last row of Q0Σ
−1/2
2 . Let ǫ = min{ǫ1, ǫ2, 1/(nRnT )}. By Lemma 3 and the continuity

of the mapping f1(U) = Σ
−1/2
1 U and f2(Q) = QΣ

−1/2
2 , we can show that Vol(U(ǫ)) > 0 and

Vol(Q(ǫ)) > 0, following the similar argument in Appendix 5.A.

For the upper bound of I2 in Appendix 5.A, define the eigenvalue decompositions of Σ1

and Σ2 as

Σ1 = U1Λ1U
†
1 and Σ2 = U2Λ2U

†
2 .

Since both Σ1 and Σ2 are of full rank, the diagonal elements of Λ1 and Λ2 are all positive. Let

x1 and x2 denote the largest elements of Λ1 and Λ2, respectively. It is easy to show that

∑

i,j

|hij |2 = ||H||2F = ||Σ−1/2
1 UΛ1/2QΣ

−1/2
2 ||2F >

1

x1x2
||UΛ1/2Q||2F =

1

x1x2

nR∑

i=1

ρ−αi , (5.67)

then we have

(
∑

i,j

|hij |2)β/2 > (

∑nR
i=1 ρ

−αi

x1x2
)β/2 >

∑nR
i=1 ρ

−αiβ/2

(x1x2)β/2nR
. (5.68)

Using (5.68) instead of (5.57) in the construction of the upper bound of I2, it turns out that

the result in Appendix 5.A still holds. Similar argument is applicable for the proof of Lemma

2. Arguments for the case of independent non-identical distribution in Section 5.6.2 can also

be applied here. Thus, the covariance matrices Σ1 and Σ2 have no effect on the calculation of

dout(r) and dG(r), provided that they have full ranks. This completes the proof.

5.11 Appendix 5.D Proof of Theorem 6

The key for this proof is to handle the term
∏

i

∏
j |hij − h̄ij |tij properly. Without loss of

generality, we assume that nR 6 nT .
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For the upper bound of I1 in Appendix 5.A, notice that ∃ 0 < M <∞ (independent of U

and Q when nR and nT are fixed) such that

|hij − h̄ij |tij 6 2tij (|hij |tij + |h̄ij |tij ) 6 Mρ−αnR tij/2 + 2tij |h̄ij |tij .

Thus

∏

i,j

|hij − h̄ij |tij 6
∏

i,j

(
Mρ−αnR tij/2 + 2tij |h̄ij |tij

)
.

In the expansion of the right hand side of the above inequality, the term with the lowest order

of (ρ−αnR ) is (ρ−αnR )
1
2

∑
(i,j∈I) tij , where I = {(i, j) : h̄ij = 0}. This term will determine the

diversity result, since integration of it yields the smallest diversity gain.

For the lower bound of I1 in Appendix 5.A, we use a slightly different definition of S(δ) as

S(δ) ≡ {α : |αi − αj | > δ,∀i 6= j and αnR > δ},

then A′
⋂S(δ) ↑ A′ as δ → 0. Next, we only need to show that for given Q ∈ V ′

nR,nT (ǫ),

U ∈ V ′′
nR,nR(ǫ), and α ∈ S(δ),

nR∏

i=1

nT∏

j=1

|hij − h̄ij |tij > ρ−
∑

(i,j)∈I

tij
2
·αnR · (θ + f(ρ, δ)), (5.69)

where I = {(i, j) : h̄ij = 0}, θ > 0 is a constant, and f(ρ, δ) is a function of ρ and δ. We can

see that

• if h̄ij = 0,

|hij − h̄ij |tij > ρ−αnR tij/2(ǫ−N3ρ
−δ/2)tij , (5.70)

where 0 < N3 <∞ is a constant.

• if h̄ij 6= 0,

|hij − h̄ij |tij > (|h̄ij | −N4ρ
−δ/2), (5.71)

where 0 < N4 <∞ is a constant.
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Combining (5.70) and (5.71), we obtain (5.69). Then following the same method in Ap-

pendix 5.A, we can complete the proof for I1. The proof for J1 in Appendix 5.B is similar.

The proofs for the upper bound of I2 in Appendix 5.A and the upper bound of J2,q in Ap-

pendix 5.B are similar to the proof of the upper bound of I1 here. The arguments for the case

of independent non-identical distribution in Section 5.6.2 can also be applied here.

Therefore, the results of dout(r) and dG(r) in Theorem 1 and Lemma 2 are also applicable for

the case of non-zero channel mean H, with t
2nRnT replaced by

∑
(i,j)∈I tij/2. This completes

the proof.
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CHAPTER 6. CONCLUSIONS AND FUTURE WORK

In this thesis, we studied two important issues in wireless MIMO communication systems:

iterative receiver design for coded MIMO systems and diversity-multiplexing tradeoff analy-

sis for general fading channels. We proposed the iterative receiver structure which includes

two modules: MIMO demodulator and error-control decoder, and further decoupled the re-

ceiver design problem into two sub-problems, MIMO channel estimation and MIMO detection.

We developed an EM-based semi-blind channel and noise covariance matrix estimation algo-

rithm for space-time coding systems under spatially correlated noise, and derived the modified

Cramér-Rao (MCRB) bounds for unknown parameters. We showed that the proposed channel

estimation algorithm can achieve the MCRB after several iterations between MIMO demod-

ulator and error-control decoder. For the MIMO detection problem, we proposed a novel

low-complexity MIMO detection algorithm by incorporating the prior information from error-

control decoder into BLAST nulling/cancelling algorithm. We demonstrated that this MIMO

detection algorithm can achieve near-optimal (MAP detection) performance with only cubic

order complexity, which is much lower than the exponential complexity of MAP detection algo-

rithm. Our solutions to the receiver design problem give the wireless communication systems

designers an option to approach the goal of reliable high-speed communications over unreliable

wireless channels. In the second part of this thesis, we derive the optimal diversity-multiplexing

tradeoff for general MIMO fading channels, which include different fading types as special cases.

We show that optimal diversity-multiplexing tradeoff can be characterized exactly in a simple

piecewise linear function given long enough channel coherent length, where only the first seg-

ment is affected by different fading types. When the channel coherent length is short, we only

provide lower and upper bounds for the optimal tradeoff curve. We proved that under certain
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full-rank assumptions spatial correlation has no effect on the the optimal tradeoff. We also

argued that non-zero channel means in general are not beneficial for multiplexing-diversity

tradeoff. Our new diversity-multiplexing tradeoff results may facilitate a more comprehen-

sive understanding of the limiting performance of MIMO systems under generalized fading

conditions.

We have the following three topics for future research which are closely related to the work

in this thesis.

• Channel estimation for fast fading MIMO systems The channel estimation algorithm

proposed in Chapter 3 are specifically designed for quasi-static fading model. In prac-

tice, due to the relative movement between the transmitter and the receiver, the channel

coherence time may be much smaller than our frame length. For such fast fading MIMO

systems, channel tracking is much more difficult. Most of current channel estimation

algorithms for fast fading MIMO systems are based on first-order AR model, and use

Kalman filtering method [77, 90]. Finding a better model and more sophisticated esti-

mation algorithms for this problem will be one of our future research topics.

• Per antenna power and rate control with limited feedback When perfect MIMO channel es-

timation is available at the transmitter, higher spectral efficiency and better transmission

quality can be achieved. Unfortunately, due to channel estimation errors and non-perfect

feedback channels, the transmitter can only access partial channel information through

limited feedback. With such limited feedback, we can design per antenna power and

rate control algorithm to improve the spectral efficiency and system performance. Most

of existing algorithms choose the optimal rate and power for each antenna by maximiz-

ing the capacity, or minimizing the error probability for very simple linear receiver (e.g.,

zero-forcing or LMMSE). For medium-frame transmission, the outage probability is more

meaningful than the ergodic capacity. On the other hand, the outage probability can be

characterized by diversity gain and coding gain at high SNR [114], which makes it easier

to evaluate than the capacity. Therefore, minimizing the outage probability is another

possible optimization criterion. Another issue that needs to be considered is the channel
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estimation error. The influence of channel estimation error on the performance of per

antenna power and rate control schemes is also an interesting topic.

• Cooperative MIMO networks In cooperative wireless networks, each user is assumed to

transmit its own data as well as act as a cooperative agent for other users such that the

average performance (e.g., spectral efficiency for each user) is improved under the total

power and bandwidth constraints [78]. With the cooperation from other users, a virtual

MIMO channel can be constructed between two single-antenna users without the use of

multiple antennas, and the spatial diversity gain can also be obtained. The asymptotic

performance of such systems can be analyzed using the method proposed in Appendix A.

Given the total power constraint, both amplify-and-forward (AF) cooperative schemes

and decode-and-forward (DF) schemes can be studied and compared with each other.

Another theoretical problem is to study the optimal diversity-multiplexing tradeoff for

such cooperative MIMO systems. Previous work has been done for simple relay channels

with AF and DF cooperative schemes [6, 81]. The extension to cooperative MIMO

systems with AF and DF schemes over general fading channels will be one of our future

research topics.
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APPENDIX A. AVERAGE SYMBOL ERROR PROBABILITY AND

OUTAGE PROBABILITY ANALYSIS FOR GENERAL COOPERATIVE

DIVERSITY SYSTEMS AT HIGH SIGNAL TO NOISE RATIO

A.1 Introduction

Recently, cooperation between wireless communicators has been proposed in wireless and

ad hoc networks to provide spatial diversity without requiring the use of physical antenna

arrays; see e.g., [61]. Such spatial diversity has been termed as cooperative diversity. The idea

is that there are a number of terminals around a source terminal, which are willing to cooperate

and transmit signals for the source as relays so that a virtual (or distributed) multi-antenna

system is formed to provide spatial diversity.

Different cooperation schemes have been introduced [60, 61, 62, 91, 92]. Based on the

transmission strategy at relays, they can be divided into two categories: amplify-and-forward

(also known as non-regenerative) schemes, and decode-and-forward (regenerative) schemes. For

non-regenerative schemes, the relays simply amplify and re-transmit the received signal; for

regenerative schemes, the relay decode, re-encode, and re-transmit the received signal. Space-

time coding can be combined with regenerative schemes to boost the performance further [62,

98]. Some adaptive relaying techniques are also proposed in [60].

In this appendix, we will focus on non-regenerative cooperative diversity systems which are

appealing from the implementation perspective. We will study the end-to-end performance of

such schemes over random fading channels. Similar work so far has dealt with the cooperative

systems with two hops [45, 44], multiple hops [13, 46], and multiple branches with multiple

hops [87], over some special forms of fading channels. A hop is a point-to-point link between

a source and a relay, two relays, or a relay and the destination. A branch is a single path from
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the source to the destination, consisting one or more hops. Most of the work tried to find the

closed-form expressions of the error performance and/or outage probability. Relying on high

signal-to-noise ratio (SNR) approximation proposed in [114], we aim to analyze the asymptotic

error performance and outage probability for a general non-regenerative cooperative diversity

system. Using two parameters, namely diversity gain and coding gain, the system performance

can be quantified by a simple expression at high SNR. This simplicity offers useful insight to

understanding of the performance limiting factors in cooperative diversity systems.

An outline of this appendix is as follows. Section A.2 reviews an important result for

asymptotic error performance analysis for communications over fading channels that we will use

in our analysis. Section A.3 analyzes the error performance of a two-hop diversity system, which

is generalized to a general cooperative diversity system in Section A.4. Section A.5 present

results on the asymptotic outage probability. Simulation results are provided in Section A.6,

and Section A.7 concludes this appendix.

A.2 Average error probability

We briefly review in this section some result of [114] that will be used in our subsequent

analysis. Consider a communication system over time-flat fading channels. The average symbol

error probability (SEP) is given by

PE =

∫ ∞

0
PE(γ)p(γ)dγ (A.1)

where γ is the instantaneous SNR at the receiver, PE(γ) is the instantaneous SEP, and p(γ) is

the probability density function (PDF) of γ. In order to study the average SEP at high SNR,

we make the following assumptions:

1. The instantaneous SNR is γ = βγ̄, where γ̄ is a positive deterministic quantity, and β is

a channel-dependent nonnegative random variable.

2. The β-dependent instantaneous SEP is given by PE(β) = Q(
√
kβγ̄), where Q(·) is Gaus-

sian Q function, and k is a positive constant depending on the modulation scheme only.
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3. The PDF p(β) can be approximated as p(β) = aβt + o(βt+ǫ), for β → 0+, where ǫ > 0

and a is a positive constant. Both a and t are determined by the channel PDF.

Proposition 1 [114] (Diversity and Coding Gains): At high SNR, the average SEP of a system

satisfying the above assumptions i)-iii) depends only on the behavior of p(β) at β → 0+.

Specifically, it is given by

PE ≈ 2taΓ(t+ 3
2)√

π(t+ 1)
· (kγ̄)−(t+1) = (Gc · γ̄)−Gd (A.2)

where Γ(·) is the Gamma function and

Gd = t+ 1, and Gc = k

(
2taΓ(t+ 3

2)√
π(t+ 1)

)−1/(t+1)

. (A.3)

In the following table, we list the PDF and parameters t and a as in Proposition 1 for some

commonly used fading types.

Channel

Type

p(β) t a

Rayleigh e−β t = 0 a = 1

Nakagami-n p(β;n) = (1 + n2)e−n2
exp(−(1 +

n2)β)I0(2n
√

(1 + n2)β)

t = 0 a = (1 + n2)e−n2

Nakagami-m p(β;m) = mmβm−1

Γ(m) exp(−mβ) t = m− 1 a = mm/Γ(m)

This proposition implies that the average SEP at high SNR can be quantitatively param-

eterized with Gd and Gc, termed as diversity gain and coding gain respectively. The intuition

behind Proposition 1 is that the average SEP at high SNR is dominated by the low-probability

event that the instantaneous SNR becomes small. The behavior of p(β) at β → 0+ determines

the high SNR performance. Refer to [114] for consequences of the proposition and more results

on diversity combining.
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S R D

h1 h2

Figure A.1 A cooperative diversity system with two hops

A.3 Performance analysis for two-hop diversity system

A.3.1 System model

We first study a simple cooperative diversity system with two independent hops as depicted

in Fig. A.1.

A terminal S is communicating with terminal D through a relay terminal R over time-flat

fading channels. The source S transmits a digital symbol x from a finite constellation (e.g.,

phase-shift keying or quadrature amplitude modulation). The relay receives a noisy copy of

x through the fading channel h1, amplifies the received signal y1 with amplifying gain A, and

forward it to the destination D through the fading channel h2. We assume that h1 and h2 are

independent. The received signal y1 and y2 at relay R and terminal D can be written as

y1 = h1x+ n1, (A.4)

y2 = h2A(h1x+ n1) + n2 = h2Ah1x+ (h2An1 + n2). (A.5)

Without loss of generality, we assume that the complex additive white Gaussian noises (AWGN),

n1 and n2, are independent with the same variance N0. The end-to-end instantaneous SNR is

γ :=
|h2Ah1|2E[|x|2]

|h2A|2E[|n1|2] + E[|n2|2]
=

|h1|2|h2|2A2Es

(|h2|2A2 + 1)N0
, (A.6)

where Es :=E[|x2|] is energy per symbol of the digital symbol x from source S.

There are a number of choices for the amplifying gain A, which affects the relay power.

One choice as proposed in [61] is

A2 =
Es

Es|h1|2 +N0
, (A.7)

which makes the relay power the same as that of the source. With this choice of A, by

substituting (A.7) into (A.6), we obtain

1

γ
=

1

γ1
+

1

γ2
+

1

γ1γ2
, (A.8)
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where γ1 := |h1|2Es/N0 and γ2 := |h2|2Es/N0 are the per-hop instantaneous SNR.

Another choice of the amplification gain is

A2 =
1

|h1|2
, (A.9)

which inverts the fading attenuation. With this choice of A, the end-to-end SNR satisfies

1

γ
=

1

γ1
+

1

γ2
. (A.10)

It turns out that γ in (A.10) is mathematically more tractable than that in (A.8). Although

practically less attractive (because it leads to more power at relay R), the choice of γ in (A.9)

is a tight upper bound for the one in (A.7) at high SNR, as (A.7) becomes the same as (A.9)

when N0 → 0. Simulation results in [45, 44, 46] also showed that the average SEP and outage

probability with (A.7) are tightly lower bounded by those with (A.9). In the following, we will

therefore fix A as in (A.9).

A.3.2 Average SEP for a single-branch two-hop system

We define γ := βγ̄ as in assumption i) in Section A.2, where γ̄ = Es/N0, then (A.10) can

be expressed as

1

β
=

1

β1
+

1

β2
, (A.11)

where β1 = |h1|2 and β2 = |h2|2, which are independent. Based on Proposition 1, the average

SEP of this two-hop diversity system at high SNR can be analyzed through the behavior of

p(β) at β → 0+. In particular, we have the following result.

Proposition 2 (PDF of β for two-hop system): Suppose the PDF p1(β1) and p2(β2) can be

approximated by p1(β1) = a1β
t1
1 + o(βt1+ǫ1

1 ), for β1 → 0+ and p2(β2) = a2β
t2
2 + o(βt2+ǫ2

2 ), for

β2 → 0+, respectively. The PDF p(β) of β as in (A.11) is approximated as

p(β) = aβt + o(βt+ǫ), forβ → 0+,
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where

t = min(t1, t2), and a =





a1 if t1 < t2,

a1 + a2 if t1 = t2,

a2 if t1 > t2.

(A.12)

Proof:

β10

β2

β = β1β2

β1+β2

α

α

I

IIIII

β10

β2

β = β1β2

β1+β2

(1 + δ)α

(1 + δ)α

IV

V

V I

Figure A.2 Decomposition of the event region of {β < α}.

In the (β1, β2) two-dimensional space, the probability P(β < α) for a fixed positive α can

be written as the integral of the joint PDF p(β1, β2) over the region {(β1, β2) : 1
β1

+ 1
β2
> 1

α},

which is the region under the hyperbola curve in Fig. A.2. By decomposing the region into

smaller pieces, we can upper and lower bound the probability P(β < α). We obtain a lower

bound PL of P (β < α) for α→ 0+ as follows:

PL ,P (I) + P (II) − P (III) = P (β1 < α) + P (β2 < α) − P (β1 < α)P (β2 < α)

=
a1

t1 + 1
αt1+1 +

a2

t2 + 1
αt2+1 + oL(α

t1+1+ǫ1) + oL(α
t2+1+ǫ2) + oL(α

t1+t2+2)

For a fixed small positive number δ, the probability P (β < α) can be upper bounded by:

PU ,P (IV ) + P (V ) + P (V I)

=P
(
β1 < (1 + δ)α

)
+ P

(
β2 < (1 + δ)α

)
+

P
(
(1 + δ)α < β1 < (1 + δ)α/δ

)
· P
(
(1 + δ)α < β2 < (1 + δ)α/δ

)

=
a1(1 + δ)t1+1

t1 + 1
αt1+1 +

a2(1 + δ)t2+1

t2 + 1
αt2+1 + oU(αt1+1+ǫ1) + oU(αt2+1+ǫ2) + oU(αt1+t2+2)
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In the above derivation, we have used the fact that P (β1 < α)P (β2 < α) and P
(
(1 + δ)α <

β1 < (1 + δ)α/δ
)
P
(
(1 + δ)α < β2 < (1 + δ)α/δ

)
have the order of α as t1 + t2 + 2 for fixed δ,

and all other higher order terms can be omitted. Since the upper bound holds for any δ > 0,

we can let δ → 0 and obtain that

PU =
a1

t1 + 1
αt1+1 +

a2

t2 + 1
αt2+1 + oU(αt1+1+ǫ1) + oU(αt2+1+ǫ2) + oU(αt1+t2+2)

Notice that we are studying the behavior of P (β < α) for α→ 0+, thus we can always choose

α much smaller than δ so that the above expression is valid (for example, take α = δ2/(1+ δ)).

By comparing the corresponding polynomial terms of P (β < α) = a · αt+1/(t+ 1) + o(αt+1+ǫ)

with PL and PU , , we can reach the final results. �

As stated in Section A.2, the average SEP at high SNR can be characterized by the diversity

gain and coding gain, which depend only on the behavior of p(β) at β around 0+. Therefore,

combining the results in Propositions 1 and 2, we can obtain the following result about the

average SEP of a two-hop relay system.

Proposition 3 (Average SEP of two-hop diversity system): Consider a two-hop diversity system

as specified by (A.4)–(A.6), (A.9), and (A.10), where the two hops h1 and h2 are independent.

Let Gdl and Gcl denote the diversity and coding gains associated with γl = βlγ̄, l = 1, 2. The

average SEP at high SNR can be approximated as

PE ≈ (Gc · γ̄)−Gd

where the diversity gain Gd and the coding gain Gc for γ are given, respectively, by

Gd = min(Gd1, Gd2), and Gc =





Gc1 if Gd1 < Gd2,

(
G−Gd

c1 +G−Gd

c2

)−1/Gd

if Gd1 = Gd2,

Gc2 if Gd1 > Gd2.

(A.13)

Notice that the two hops can have not only different SNR’s, but also different types of

PDF’s. However, the end-to-end diversity gain is always determined by the hop with smaller

diversity gain, i.e., the weaker hop.
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A.4 General cooperative diversity system

A.4.1 Single-Branch Multi-Hop System

S R1 RL−1 D

h1 h2 hL−1 hL

Figure A.3 A cooperative diversity system with N hops.

The results in Section A.3 can be generalized to a multi-hop system. As shown in Fig. A.3,

the system with L hops is composed of a source terminal S, a destination terminal D, and

(L− 1) intermediate relay terminals R1 through RL−1. The fading coefficient for lth hop will

be denoted as hl, the AWGN as nl, and the amplification coefficient at terminal Ri as Ai.

Without loss of generality, we assume all nl’s are independent and have the same variance N0.

Then the received signal yl at the end of lth hop can be expressed as

yl = hlAlyl−1 + nl, l = 1, . . . , L− 1, (A.14)

yL = hLyL−1 + nL, (A.15)

where y0 = x, which is the transmitted symbol from terminal S with energy Es. As stated in

Section A.3.1, we choose A2
l = 1/|hl|2. With this simplification we obtain the instantaneous

end-to-end SNR γ as

1

γ
=

1

γ1
+

1

γ2
+ · · · + 1

γL
(A.16)

which is equivalent to (cf. assumption i in Section A.2)

1

β
=

1

β1
+

1

β2
+ · · · + 1

βL
(A.17)

where β = γ/γ̄, βl = γl/γ̄, and γ̄ = Es/N0. By Proposition 2 and induction on l, we can

readily obtain the following result.

Proposition 4 (Diversity and coding gains of a single-branch multi-hop system): Consider L

non-negative independent random variables β1, β2, . . . , βL with approximated PDFs pl(βl) =

alβ
tl
l + o(βtl+ǫl

l ), for βl → 0+ and l = 1, . . . , L. The PDF p(β) of β as in (A.17) can be
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approximated as

p(β) = aβt + o(βt+ǫ), for β → 0+,

where

t = min
l=1,...,L

(tl), a =

Lc∑

i=1

ali , (A.18)

and {l1, . . . , lLc} is the set of indices of tl’s such that tl = t. The corresponding diversity and

the coding gains are given by

Gd = min
l=1,...,L

(Gd,l) and Gc =

(
Lc∑

i=1

G−Gd

c,li

)−1/Gd

(A.19)

where Gd,l and Gc,l are the diversity and the coding gains of the lth hop, respectively.

This important result reveals that the overall asymptotic performance of a multi-hop system

is determined by the weakest hops. Here, the “weakest” hops means the hops with smallest

diversity gain.

A.4.2 Multi-branch system

S D

h3

h1

h2

hM

Figure A.4 A cooperative diversity system with M hops.

In addition to the multi-hop system, multi-branch cooperative diversity system is another

choice. Consider a diversity system with M branches between terminal S and terminal D as

shown in Fig. A.4. We assume that all branches are mutually orthogonal, and maximum ratio

combining (MRC) is employed at the terminal D. Other combining schemes can also be dealt

with. Then the overall end-to-end SNR γ is the sum of the end-to-end SNR’s for each branch,

i.e., γ =
∑M

m=1 γm.
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For such a system, the overall diversity gain and coding gain have been given in [114],

which is repeated in the following proposition for completeness.

Proposition 5 [114] (Diversity combining): Let γm = βmγ̄ have diversity gain Gd,m and coding

gain Gc,m, for m = 1, . . . ,M , and suppose that βm’s are mutually independent. Then, the

diversity gain Gd and coding gain Gc for γ = βγ̄ are given, respectively, by

Gd =

M∑

m=1

Gd,m

Gc =

[
2M−1π(M−1)/2Γ(1/2 +Gd)[

∏
m
Gd,mΓ(Gd,m)]

Γ(1 +Gd)[
∏

m
G

Gd,m
c,m Γ(Gd,m + 1/2)

]1/Gd

(A.20)

Notice that each branch can have different fading conditions, and the result only depends

on the end-to-end diversity gain and coding gain of each branch.

A.4.3 Multi-branch, multi-hop system

Based on the results in Sections A.4.1 and A.4.2, we can now study the asymptotic perfor-

mance of a general cooperative diversity system with multi-branch and multi-hop.

S D

R11 R1L1

RM1 RMLM

h0

h11

h12 h1(L1−1)

h1L1

hM1

hM2 hM(LM−1)

hMLM

Figure A.5 A cooperative diversity system with multi-hop and multi-

-branch.

A general cooperative system can be modeled as a system with M branches, the mth

of which has Lm hops, as depicted in Fig. A.5. We assume that the fading coefficients are

mutually independent, and MRC is employed. Other combining schemes such as equal-gain

combining or selection combining can also be dealt with. Since each branch is a multi-hop
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diversity system as studied in Section A.4.1, the end-to-end diversity gain Gd,m and coding

gain Gc,m of the mth branch are given by (A.19), for m = 1, . . . ,M . Then, such branches

can be viewed as non-relay fading channels with the corresponding diversity gains and coding

gains. Based on this observation, we have the following result.

Proposition 6 (Diversity and coding gains for a multi-branch multi-hop system): The overall

diversity and coding gains of the multi-branch multi-hop cooperative diversity system are given

by:

Gd =
M∑

m=1

Gd,m

Gc =

[
2M−1π(M−1)/2Γ(1/2 +Gd)[

∏
m
Gd,mΓ(Gd,m)]

Γ(1 +Gd)[
∏

m
G

Gd,m
c,m Γ(Gd,m + 1/2)

]1/Gd

Gd,m = min
l=1,...,Lm

Gd,ml

Gc,m =




Lc,m∑

i=1

G
−Gd,m
c,mli




−1/Gd,m

(A.21)

where Gd,ml and Gc,ml are the diversity gain and coding gain of the lth hop in the mth branch,

respectively.

Therefore, the diversity of multi-branch multi-hop cooperative system is the sum of the branch

diversities, and the diversity gain of a branch is equal to the least diversity gain among all

hops in the branch.

The result is quite general: It applies to many types of fading models, such as Rayleigh,

Rician, Nakagami-m, etc.. The only requirement is that the PDF of the fading coefficients can

be approximated by a term like βt, where t does not have to be integer. The hops can also

have different fading types.

It can be seen from (A.21) that, in general, the resource is better used to add a cooperative

branch than to add a hop in an existing branch.



www.manaraa.com

105

A.5 Outage probability

In addition to the average SEP, outage probability is another performance criterion for

the communication system over fading channels. It is defined as the probability that the

instantaneous SNR γ falls below a certain threshold γth [99]:

Pout := P (0 6 γ 6 γth) =

∫ γth/γ̄

0
p(β)dβ. (A.22)

where γ = βγ̄. If γ̄ is large enough, then Pout depends only on the behavior of p(β) at β → 0+.

In a general cooperative diversity system, we define “outage” as the event that the overall

end-to-end SNR falls below a certain threshold. The outage probability therefore only depends

on the PDF of the end-to-end SNR. It has been shown in [114] that the outage probability and

average SEP share the same diversity gain, and their coding gains are different by a constant

that is easily computable. Therefore, all the results that we have obtained on average SEP can

be suitably modified to deal with outage probability.

A.6 Simulation results

We used Monte Carlo simulations to find the end-to-end performance of cooperative diver-

sity systems, and compared them with the analytical results developed herein. For simplicity,

binary phase shift keying (BPSK) modulation was employed. Our performance criteria were

bit error rate (BER) and outage probability of the whole system. We define the average SNR

as γ̄ = Eb/N0, where Eb is the energy of the BPSK symbol.

Since the results of two-hop diversity system presented in Section A.3 are important for all

other results after that, we first simulated the single-branch two-hop setup. Suppose the first

hop is over Rayleigh fading channel, and the second one is over a Nakagami-m channel with

parameter m equal to 2, 3, or 4. The amplification coefficient A at the relay has the form of

(A.9). For these three different cases, the diversity gain of the first hop Gd,1 is always 1, and the

second hop Gd,2 = 2, 3, 4, respectively. Using Proposition 3 and the argument in Section A.5,

we can obtain the analytical expressions of the BER and the outage probability. According

to the analysis, the BER performance at high SNR for three different cases are all the same.
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Figure A.6 Performance of a two-hop cooperative diversity system. The
first hop is over Rayleigh fading channel, and the second hop
is over Nakagami-m channels with m = 2, 3, or 4.

The simulation results matched well the analytical line predicted by Proposition 3. Similar

observations can be drawn from the outage probabilities. Moreover, the analytical results also

provide a very good approximation for moderate SNR values. These facts verify the conclusion

that the end-to-end performance of a two-hop system is determined by the “weaker” hop. In

this case, it corresponds to the first hop, since Gd,1 = 1, which is less than Gd,2 = 2, 3, 4.

We next focus on a general cooperative diversity system with multi-branch and multi-

hop. Consider a system with two branches, and each branch has multiple hops. Suppose the

first branch has two hops over Rayleigh and Rician (K = 4) fading channels, and the second

branch has four hops over Nakagami-m fading channels, where m = 0.5, 1.5, 2, 0.5 respectively.

To justify the choice of amplification coefficients at the relays, simulation results of the systems

using (A.7) and (A.9) as amplification coefficients are both depicted in Fig. A.7, together with

the analytical lines. It is seen from the above figure that the performance of the system using

(A.9) as amplification coefficients is a tight lower bound on that of a system using (A.7), even

at the low and moderate SNR values. Another important observation is that, for both BER

and outage probability, the analytical lines match the simulation results perfectly at high SNR,

and are also good approximations for the moderate SNR. Notice that the analytical results
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Figure A.7 Performance of a general cooperative diversity system with two
branches. The first branch has two hops over Rayleigh and
Rician (K = 4) fading channels, and the second branch has four
hops over Nakagami-m fading channels withm = 0.5, 1.5, 2, 0.5,
respectively. The dotted lines are obtained from Monte-Carlo
simulation.

do not predict the true performance behavior at low SNR. This is due to the fact that our

approximations are based on the high SNR assumption, which is the focus of this work.

A.7 Summary

We introduced two parameters, diversity gain and coding gain, to characterize the average

symbol error probability and outage probability of a cooperative diversity system at high SNR.

We analyzed the asymptotic error probability and outage probability for a single-branch two-

hop system, a multi-branch system, and a general multi-branch multi-hop system, all with

non-regenerative relay policy. Our analysis indicates that the diversity of multi-branch multi-

hop cooperative system is the sum of the branch diversities, and the diversity gain of a branch

is equal to the least diversity gain among all hops in the branch. We have also obtained coding

gain expressions for the general setup. Our analysis is applicable to cooperative systems with

any number of branches and hops, and valid for almost all commonly used fading models.

Simulations results match well the analytical performance at moderate and high SNR values.

Our results are important in providing guidelines for designing a cooperative system. For
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example, a simple consequence is the observation that it is better to add a cooperative branch

than to add a hop in an existing branch.
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APPENDIX B. LIFETIME MAXIMIZATION UNDER

CONNECTIVITY AND k-COVERAGE CONSTRAINTS IN WIRELESS

SENSOR NETWORKS

B.1 Introduction

Energy conservation is perhaps the most important issue in wireless sensor networks [2, 28].

Most sensor devices are battery-powered and hence have a very limited amount of energy. It

is, therefore, very important to extend the battery operation time of individual sensors and,

consequently, the network’s lifetime. Operating each sensor device in a low duty-cycle has

been recognized as an effective way to achieve this goal, where duty-cycle is defined as the

fraction of time that a sensor device is active. On the other hand, a wireless sensor network

typically has two major tasks: sensing and communication. It is always desirable to have all

active sensors connected and, at the same time, to have the entire sensing field k-covered. The

connectivity among active sensors is required in order for an active sensor to report its sensing

results back to the user, and the reason for requiring k-coverage rather than just 1-coverage

is to increase the detection probability and accuracy of tracking. Obviously, the lower the

duty-cycles of individual sensors, the longer the wireless sensor network’s lifetime, but at the

same time, there are a smaller number of active sensors at a given time and, hence, more

likely either active sensors are not connected or the k-coverage of the sensing field cannot be

guaranteed. So, there are inherent tradeoffs, and the key contribution of our work is to present

an integrated study on connectivity, k-coverage, and lifetime of a large-scale wireless sensor

network.
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B.1.1 Related Work

Several researchers [40, 112, 95, 59] have addressed the coverage and connectivity issues

in wireless sensor/ad hoc networks. Gupta et al. [40] studied scaling laws for asymptotic

connectivity of sensors placed at random over a unit area, and provided bounds on connectivity

probability for finite-size networks. In [112], the authors studied the relation between k-

coverage and k-connectivity when the communication radius is at least twice the sensing radius,

where the sensing radius is deterministic. However, no statistical properties of either k-coverage

or k-connectivity were given. In [95] and [59], the asymptotic coverage problem was addressed

for mostly-sleeping (unreliable) wireless sensor networks, where 1-coverage was studied in [95]

and k-coverage in [59], but neither one provided the sufficient and necessary condition for

asymptotic coverage. Moreover, none of the above work considered the inherent irregularity of

sensing radii due to the time-varying environments. In contrast, we model the sensing radius

as a random variable.

Recently, research efforts [118, 121] have also been made to analyze the lifetime of a wireless

sensor network with coverage requirements. The definitions of network’s lifetime in these

literature are different from ours. In [118], the lifetime was defined as the time it takes for

the coverage — defined as the ratio of the area covered by working sensors to the entire area

— to drop below a pre-defined threshold. In [121], the α-lifetime of a wireless sensor network

was defined as the interval during which at least α portion of the sensing region is covered

by at least one sensor node. Both [118] and [121] only studied the relation between network’s

lifetime and coverage of the sensing field without, however, considering the connectivity among

active sensors, which is another key element for the network to function properly. The above

definitions of network’s lifetime are all from the deterministic point of view. Considering the

fact that the deployment and dynamics of wireless sensor networks are random and, hence,

the coverage of the sensing field and the connectivity among active sensors are also random

variables, we study network’s lifetime from a (different) probabilistic perspective.
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B.1.2 Key Contributions

We explore the fundamental limits of a wireless sensor network’s lifetime under connectivity

and k-coverage constraints, and the contributions are threefold. First, asymptotic results

for k-coverage of the sensing field are presented. Under independent sleeping schemes and

random sensing radius model, we derive the sufficient and necessary condition on the sensing

radius in order to maintain k-coverage with probability one as the number of sensors goes

to infinity. Second, we introduce a new definition of network’s lifetime from a probabilistic

perspective, namely ω-lifetime, which is defined as the expectation of the time interval during

which the probability of guaranteeing connectivity and k-coverage simultaneously is at least ω.

By solving two convex optimization problems, we obtain a lower bound and an upper bound on

the network’s maximum ω-lifetime. Third, based on the obtained lower bound, we propose a

near-optimal scheduling scheme, called CIS (Coordinated Independent Sleeping), to maximize

the network’s ω-lifetime, and describe a possible distributed implementation of the CIS scheme.

B.1.3 Organization

The rest of this appendix is organized as follows. Section B.2 describes our network model

and gives the problem statement. In Section B.3, we derive the sufficient and necessary condi-

tion for maintaining k-coverage with probability one as the number of sensors goes to infinity.

Section B.4 describes the details of the proposed CIS scheduling scheme. Section B.5 presents

and evaluates the simulation results and, finally, the appendix concludes in Section B.6.

B.2 Network Model and Problem Statement

B.2.1 Network Model

Consider a wireless sensor network of n sensors deployed independently and uniformly

within a square sensing field D of unit area. In order to extend network’s lifetime, an ap-

propriate duty cycle and a well-designed sleeping schedule are required, and we propose the

following Coordinated Independent Sleeping (CIS) scheme for this purpose: time is divided
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into rounds, and at the beginning of a round, each alive sensor becomes active with probabil-

ity p or inactive (sleeping) with probability (1−p), independently from others. The value of p

varies with the round and is determined by the performance metric to be optimized. Here, alive

sensors refer to the sensors with enough energy to operate. The CIS scheme is based on the

Randomized Independent Sleeping (RIS) scheme proposed in [59] and the details of CIS will

be discussed in Section B.4.

B.2.1.1 Sensing model

To consider the sensing radii irregularity caused by time-varying environments, we assume

a random disc sensing model where (1) each active sensor has a sensing radius of rs; (2)

any object within a disc of radius rs centered at an active sensor can be reliably-detected by

the sensor; and (3) rs’s are independently identically distributed (i.i.d) random variables with

mean r0 and variance r20σ
2
s , and the underlying distribution is assumed unknown. A point in

the sensing field D is said to be k-covered if it is within the sensing radius of at least k active

sensors. The field D is said to be k-covered if every point in D is k-covered.

B.2.1.2 Communication model

Two active sensors can communicate directly with each other if and only if the distance

between them is no more than rc. The radius rc is usually referred to as the communication

radius. For the purpose of simplicity, we assume that all active sensors have the same and

deterministic communication radii. The network is said to be connected if the underlying

graph composed of active sensors is connected. Moreover, we assume torus convention (also

known as the toroidal model) [41], i.e., each disc (communication or sensing) that protrudes

one side of the field D enters D again from the opposite side. This eliminates the edge effects

and simplifies the problem.
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B.2.1.3 ω-lifetime

Due to the randomness in sensor deployment and sleeping schedule, it is impossible to

guarantee connectivity and k-coverage with probability one with finite number of sensors,

unless the communication disc and the sensing disc of each active sensor can cover the entire

field. However, the physical limitations prohibit such large communication radius and sensing

radius. In other words, there is no deterministic guarantee of connectivity or k-coverage for

randomly-deployed wireless sensor networks in practice. Such facts motivate us to study the

network’s lifetime from a probabilistic perspective. More specifically, we define the ω-lifetime

of a randomly-deployed wireless sensor network as the expectation of the time interval during

which the probability of guaranteeing k-coverage of field D and the connectivity of the network

simultaneously is at least ω, where 0 < ω < 1. For example, suppose that the CIS scheduling

scheme is employed, then the network’s ω-lifetime is Tω = E
[∑M

i=1 Ti

]
, where Ti is the duration

of the i-th round, and M is the maximum number of rounds during which the network can

function properly. In other words, for any round i (i 6 M), the probability of guaranteeing

both connectivity and k-coverage simultaneously, defined as Pc&c, is at least ω, but for round

(M + 1), Pc&c is smaller than ω.

B.2.2 Problem Statement

The problems we study in this appendix are the following:

1. What relation among n, p, r0, and σ2
s would be the sufficient and necessary condition

to guarantee that the probability of the entire field D being k-covered approaches 1 as

n goes to infinity? This problem is referred to as the critical condition for asymptotic

k-coverage. Although the answer to this problem can not be directly-applied to practical

wireless sensor networks, such condition may give us insights on designing large-scale

wireless sensor networks.

2. For a finite-size wireless sensor network, how to find the optimal parameters for the CIS

scheme to maximize the ω-lifetime of the network? Compared with the first problem,
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this problem is more realistic and the result may serve as a good guideline in deploying

finite-size wireless sensor networks.

B.3 Critical Condition for Asymptotic k-coverage

In this section, we derive the sufficient and necessary condition for asymptotic k-coverage,

i.e., the entire sensing field D is k-covered with probability one as the total number of deployed

sensors n goes to infinity.

Lemma 5 Let n points distributed independently and uniformly in a square field D of unit area

within R
2, then for sufficiently large n, these points form a stationary Poisson point process

with density n.

Lemma 5 is a well-known result and its proof is given by Hall in [41]. Let P ≡ {ξi, i > 1}

denote the set of active sensors. It is shown in Lemma 6 that P is also a stationary Poisson

point process with density np for sufficiently large n.

Lemma 6 Let n points distributed independently and uniformly in a square field D of unit

area within R
2. Each point is marked independently as an active point with probability p,

where 0 < p 6 1. Then the set of active points, P = {ξi, i > 1}, is a stationary Poisson point

process with density np for sufficiently large n.

Let Si denote a random disc with radius rs,i centered at the origin of R
2, which is defined

as Si ≡ {x ∈ R
2 : |x| 6 rs,i}, where rs,i is the sensing radius of the i-th active sensor ξi. Here,

we assume that all sensing radii are i.i.d random variables following an unknown distribution

F (r), with known mean r0 and variance r20σ
2
s , i.e., all Si’s are distributed as S:

S ≡ {x ∈ R
2 : |x| 6 r, r ∼ F (r)}. (B.1)

Then, the sensing disc (abbreviated as disc) centered at active sensor ξi can be defined as

Di ≡ ξi + Si = {ξi + y : y ∈ Si}. The set of {Di, i > 1} forms a stationary coverage process.

For such a coverage process, Lemma 7 gives the distribution of the number of discs with certain

properties.
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Lemma 7 Let Q = {ξi + Si, i > 1} denote a stationary coverage process, where {ξi} is a

stationary Poisson point process with density λ within D, and Si’s are distributed as S defined

in (B.1). For a given deterministic condition C, let Y denote the number of discs in Q that

satisfy the condition C. Then, Y is Poisson-distributed with mean

µ = λ · E
[
‖{x : IC(x+ S) = 1}‖

]
,

where IC(·) is the indicator function of whether a disc satisfies the condition C or not, and

‖ · ‖ denotes the area.

The proofs of Lemma 6 and Lemma 7 are omitted due to space limitation. Interested

readers can refer to the full version of this appendix [67].

Let Y (x) denote the number of active sensors that cover a point x, and Ik(x) denote the

indicator function of whether the point x is covered by at most (k − 1) active sensors, i.e.,

Ik(x) =





1, if Y (x) < k,

0, otherwise.

Then, the expectation of Bernoulli random variable Ik(x) is

E[Ik(x)] = P (x is at most (k − 1)-covered) = P (Y (x) < k).

By Lemma 7, we know that Y (x) is Poisson-distributed with mean

µ = np · E
[
‖{x : (x+ S) ∩ {x} 6= ∅}‖

]
= np · E

[
‖x− S‖

]
= npas,

where as ≡ E
[
‖S‖

]
= πr20(1 + σ2

s). Therefore,

E[Ik(x)] = e−npas

k−1∑

j=0

(npas)
j

j!
. (B.2)

Let the k-vacancy Vk denote the area within D that is covered by at most (k − 1) active

sensors, then the random variable Vk can be expressed as Vk =
∫
D Ik(x)dx. Using Fubini’s

theorem [10] and exchanging the order of integral and expectation, we obtain the expected

value of the k-vacancy as:

E[Vk] =

∫

D
E[Ik(x)]dx = e−npas

k−1∑

j=0

(npas)
j

j!
. (B.3)
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K-coverage of the sensing field D means that each point in D should be covered by at

least k active sensors, which implies Vk = 0. Because sensors are deployed independently and

uniformly within D, it cannot guarantee P (Vk = 0) = 1 with finite n for as < 1 regardless

of the value of n. However, if np → ∞ as n → ∞, it is possible that P (Vk = 0) → 1 as

n→ ∞. Before studying the asymptotic behavior of P (Vk = 0), we first give an upper bound

and a lower bound on P (Vk = 0) for finite n. Similar bounds have been proved in [121] for the

case of deterministic sensing radius model and non-sleeping sensor networks. Theorem 8 is a

generalization of the results in [121].

Theorem 8 For n > 1, 0 < p 6 1, and as < 1

Pl < P (Vk = 0) < Pu, (B.4)

in which

Pu =
4(k + 1)!(1 + σ2

s)(np)
−1(npas)

−k · enpas

1 + 4(k + 1)!(1 + σ2
s)(np)

−1(npas)−k · enpas
, (B.5)

and

Pl = 1 − 2e−npas
(
1 + (n2p2a′s + 2npr0)

k−1∑

i=0

(npas)
i

i!

)
(B.6)

where a′s ≡ πr20(1 + σ2
s/2).

Proof: (i) Upper bound.

By the Cauchy-Schwartz inequality [41],

E[Vk] = E[Vk · I(Vk > 0)] 6 {E[V 2
k ]P (Vk > 0)}1/2,

where I(·) denotes the indicator function, thus

P (Vk > 0) >
(E[Vk])

2

E[V 2
k ]

, (B.7)

where

E[V 2
k ] = E

[ ∫ ∫

D2

Ik(x1)Ik(x2)dx1dx2

]
=

∫ ∫

D2

E[Ik(x1)Ik(x2)]dx1dx2.

Let Y1 denote the number of active sensors that cover x1, Y2 the number of active sensors that

cover x2, and Y3 the number of active sensors that cover x2, but not cover x1, then

E[Ik(x1)Ik(x2)] = P (Y1 < k, Y2 < k) 6 P (Y1 < k, Y3 < k). (B.8)
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Lemma 8 For the random variables Y1 and Y3 defined above, we have the following results:

• Y1 is Poisson-distributed with mean npas,

• Y3 is Poisson-distributed with mean npbs,

• Y1 and Y3 are independent,

where

bs ≡ E
[∥∥{x : (x+ S) ∩ {x1} = ∅, (x+ S) ∩ {x2} 6= ∅}

∥∥
]
.

The proof of Lemma 8 is omitted here due to space limitation. Interested users can refer

to [67]. Using Lemma 8 and (B.8), we have

E[Ik(x1)Ik(x2)] 6 P (Y1 < k) · P (Y3 < k) = E[Ik(x1)] · P (Y3 < k)

= E[Ik(x1)] ·
(
e−npbs

k−1∑

j=0

(npbs)
j

j!

)
.

(B.9)

Let z = x1 − x2, then

bs = E
[∥∥{x : (x+ S) ∩ {x1} = ∅, (x+ S) ∩ {x2} 6= ∅}

∥∥
]

= E
[∥∥{x : (x+ S) ∩ {z} = ∅, (x+ S) ∩ {0} 6= ∅}

∥∥
]

= as − ρ(z),

where

ρ(z) = E
[∥∥{x : (x+ S) ∩ {z} 6= ∅, (x+ S) ∩ {0} 6= ∅}

∥∥
]

=

∫ ∞

0
r2B(|z|/2r)dF (r),

and

B(x) =





4
∫ 1
x

√
(1 − y2)dy if 0 6 x 6 1

0 otherwise

is the area of the lens of intersection of two unit discs centered 2x apart, and F (r) is the

distribution of sensing radius rs.



www.manaraa.com

118

It is shown in [67] that B(x) 6 π(1 − x) for 0 6 x 6 1, then using the fact that ρ(z) > 0

and after some algebraic manipulation, we can bound ρ(z) as





ρ(z) 6 as − πrs|z|/2 if |z| < 2rs(1 + σ2
s),

ρ(z) = 0 if |z| > 2rs(1 + σ2
s).

If |z| > 2rs(1 + σ2
s), then bs = as. Using (B.9), we have

E[Ik(x1)Ik(x2)] 6 E[Ik(x1)] · E[Ik(x2)].

Therefore,

I1 ≡
∫ ∫

D2∩{|x1−x2|>2rs(1+σ2
s )}

E[Ik(x1)Ik(x2)]dx1dx2

6

∫ ∫

D2

E[Ik(x1)] · E[I(x2)]dx1dx2 = (E[Vk])
2.

(B.10)

Similarly, if |z| < 2rs(1 + σ2
s), then bs > πrs|z|/2. Using (B.9), we have

E[Ik(x1)Ik(x2)] 6 E[Ik(x1)] ·
(
e−npπrs

2
|z|

k−1∑

j=0

(npπrs|z|)j
2j · j!

)
.

Therefore,

I2 ≡
∫ ∫

D2∩{|x1−x2|<2rs(1+σ2
s )}

E[Ik(x1)Ik(x2)]dx1dx2

6

∫

D
E[Ik(x1)]dx1

∫ 2rs(1+σ2
s )

0
e−npπrsz/2

k−1∑

i=0

(npπrsz)
i

2i · i! 2πzdz

=E[Vk] ·
(∫ 1

0
e−λu

k−1∑

i=0

(λu)i

i!
8πr2s(1 + σ2

s)
2udu

)
,

<4as(1 + σ2
s)k(k + 1)λ−2.

where λ = npas. The proof of the last inequality above can be found in [67]. Hence, we have

I2 < 4as(1 + σ2
s)k(k + 1)(npas)

−2 ·
(
e−npas

k−1∑

i=0

(npas)
i

i!

)
. (B.11)

Since E[V 2
k ] = I1 + I2, combining (B.7), (B.3), (B.10), and (B.11), we can upper-bound

P (Vk = 0) as follows:

P (Vk = 0) = 1 − P (Vk > 0) 6 1 − (E[Vk])
2

E[V 2
k ]

<
β

1 + β
,
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where

β =
4(1 + σ2

s)ask(k + 1)(npas)
−2

e−npas
∑k−1

i=0 (npas)i/i!
6 4(1 + σ2

s)(k + 1)!(np)−1(npas)
−k · enpas .

Therefore, we obtain the upper bound on P (Vk = 0) as

P (Vk = 0) <
4(k + 1)!(1 + σ2

s)(np)
−1(npas)

−k · enpas

1 + 4(k + 1)!(1 + σ2
s)(np)

−1(npas)−k · enpas
.

(ii) Lower bound.

Observe that

p(Vk = 0) = 1 − p1 − p2 − p3,

where p1 = P (no active sensors centered within D) = e−np < e−npas . Here, we assume as < 1,

meaning that, even for the random sensing radius model, the expected sensing area of one

sensor will not cover the entire field D.

p2 =P (at least one disc centered within D, but none of the discs intersects

with any other disc, and none of the discs intersect the boundary of D)

6P (at least one disc centered within D) × P (a given disc intersects with no other discs)

=(1 − e−np) · e−npπE[π(rs,1+rs,2)2] = (1 − e−np) · e−2npπr2
0(2+σ2

s ) < e−npas ,

where rs,1 and rs,2 are sensing radii of two active sensors, which are i.i.d with mean r0 and

variance r20 · σ2
s , and the second equality is due to Lemma 7.

p3 =P (D is not k-covered, at least one disc centered within D, and at least

one disc intersects with another disc or the boundary of D).

Therefore

p(Vk = 0) > 1 − 2e−npas − p3. (B.12)

Our next task is to derive an upper bound on p3.

Define a crossing to be either an intersection point of the boundaries of two discs or an

intersection point of the boundary of an disc and the boundary of the field D. A crossing is

said to be k-covered if it is within at least k discs. It is proved in [112] that, field D is k-covered

if there exist crossings and every crossing is k-covered. Therefore, if D is not k-covered, if one
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or more discs are centered within D, and if there exist crossings in D, then at least one of the

discs has two or more crossings that are not k-covered. Thus

p3 6 P (Mk > 2) 6 E[Mk]/2, (B.13)

where Mk denotes the number of crossings that are not k-covered.

Define L1 and L2 as the number of crossings created by two discs intersecting with each

other, and the ones created by a disc intersecting the boundary of field D. We first study the

expected value of L1. The expected number of crossings created by a given active sensor ξ1

with other active sensors is

E[2np · π(rs,1 + rs,2)
2] = 8npa′s

where a′s ≡ πr20(1+σ2
s/2), and the expected number of discs centered within D is np. Therefore

E[L1] = np · 8npa′s/2 = 4n2p2a′s.

If a disc intersects the edge of field D, at most two crossings will be created; if a disc

intersects the corner of field D, at most four crossings will be created (due to the toroidal

model assumption). Thus the expected value of L2 is bounded by

E[L2] 6 8npr0.

The probability that a given crossing is not k-covered is given by (B.2). Therefore,

E[Mk] = (E[L1] + E[L2])e
−npas

k−1∑

j=0

(npas)
j

j!
6 4(n2p2a′s + 2npr0)e

−npas

k−1∑

j=0

(npas)
j

j!
. (B.14)

By (B.12), (B.13), and (B.14), we have

P (Vk = 0) > 1 − 2e−npas
(
1 + (n2p2a′s + 2npr0)

k−1∑

i=0

(npas)
i

i!

)
.

This completes the proof.

�

In what follows, we establish the sufficient and necessary condition for asymptotic k-

coverage.



www.manaraa.com

121

Theorem 9 Assume np→ ∞ as n→ ∞, and let

πr20(1 + σ2
s) =

ln(np) + k ln ln(np) + c1(np)

np
, (B.15)

then the entire unit square field D is k-covered with probability one as n → ∞, if and only if

c1(np) → ∞ as n→ ∞.

Proof: The entire unit square field D is k-covered with probability one means that

P (Vk = 0) → 1 as n→ ∞. First, we prove if c1(np) → ∞ as n→ ∞, P (Vk = 0) → 1.

By (B.4) and (B.6) in Theorem 8, we have

P (Vk = 0) > 1 − 2e−npas − (b1 + b2) · (np)(npas)
ke−npas ,

where b1 ≡ 2k 1+σ2
s/2

1+σ2
s

> 0 is independent of n, and b2 ≡ 4k
πr0(1+σ2

s )np
. Let npas = ln(np) +

k ln(ln(np)) + c1(np), then npas → ∞, e−npas → 0, and b2 → 0, as n → ∞. Therefore, when

c1(np) → ∞,

ln
(
(b1 + b2) · (np)(npas)

ke−npas
)

= ln(b1 + b2) + k · ln
(

ln(np) + k ln(ln(np)) + c1(np)
)
− k ln(ln(np)) − c1(np)

→−∞,

and consequently, P (Vk = 0) → 1. The first part is proved.

If c1(np) 6 C1 for some finite C1 > 0 as n→ ∞, then for sufficiently large n

4(k + 1)!(1 + σ2
s)(np)

−1(npas)
−kenpas = 4(k + 1)!(1 + σ2

s)e
c1(np) 6 4eC1(k + 1)!(1 + σ2

s),

Therefore, by (B.4) and (B.5) we have

P (Vk = 0) <
4eC1(k + 1)!(1 + σ2

s)

1 + 4eC1(k + 1)!(1 + σ2
s)
< 1.

It means that P (Vk = 0) → 1 only if c1(np) → ∞ as n→ ∞. This completes the proof.

�

Remark : The bounds obtained in Theorem 8 is valid for finite n. Therefore, they can be

used as performance criteria for designing finite-size sensor networks.
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B.4 ω-lifetime of Finite-Size Wireless Sensor Networks

The second problem addressed in this appendix is how to find optimal parameters for the

CIS scheme to maximize the ω-lifetime of a finite-size wireless sensor network.

Let A denote the event of the sensing field D being k-covered, and B denote the event of the

sensor network being connected. The probability of guaranteeing simultaneously k-coverage of

field D and connectivity of the network is Pc&c ≡ P (A ∩B).

Definition: The ω-lifetime, namely Tω, of a sensor network is defined as the expectation

of the time interval during which the probability of guaranteeing simultaneously k-coverage of

field D and the connectivity of the network is no less than ω, i.e., Pc&c > ω, where 0 < ω < 1.

In order to study the ω-lifetime, we first introduce the energy consumption model of each

wireless sensor. We assume that inactive sensors do not consume energy and the communication

traffic is evenly distributed across the network. The energy consumption of an active sensor

consists of two parts: communication and sensing. Thus, the power consumption P0 of each

active sensor can be modeled as

P0 = Q · 1

rc
· rβ

c + ∆, (B.16)

where

• rβ
c is proportional to the communication energy consumption per bit, and the typical

values of β range from 3 to 4 for different propagation models [86];

• 1/rc is proportional to the average traffic rate of active sensors (we assume that all active

sensors have the same traffic rate, following the assumption of evenly distributed traffic.);

• ∆ is the power consumption for continuous sensing;

• Q > 0 is a constant.

As the communication radius rc decreases, the average number of hops required for packets

transmitted from one point to another increases inversely. For this reason, we incorporate the

factor of 1/rc into the average traffic rate expression. We further assume that all active sensors
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have the same communication radius rc, which results in the same individual lifetime:

T0(rc) =
E′

0

P0
=

E0

rβ−1
c + η

, (B.17)

where E′
0 is the initial energy of each active sensor, E0 =

E′
0

Q , and η = ∆
Q , respectively. This

assumption is typical when analyzing the network’s lifetime, e.g., in [121] and [11].

Next, we formally define the CIS scheme which can extend the ω-lifetime of a wireless

sensor network. Suppose that time is divided into rounds. At the beginning of round i, there

are n(i) alive sensors, and each alive sensor decides independently whether to remain sleeping

(with probability 1 − p(i)), or become active (with probability p(i)). All active sensors choose

the same communication radius of r
(i)
c . Both p(i) and r

(i)
c are chosen such that Pc&c > ω. Next,

all active sensors will operate continuously until batteries die out. Since we assume that all

active sensors have the same individual lifetime, they will die out at the same time instant,

which is defined as the end of this round. The same procedure is repeated for the next rounds

until there are not enough alive sensors to satisfy the “Pc&c > ω” requirement, regardless of

the choices of p and rc.

We call this scheduling scheme Coordinated Independent Sleeping since we assume that sen-

sors are coordinated so that they may be able to choose p(i) and r
(i)
c properly at the beginning

of each round. The major differences between CIS and RIS in [59] are as follows. In CIS, p

and rc are chosen for each round to satisfy both connectivity and k-coverage requirements, and

they may vary from round to round. Within each round, all active sensors operate continu-

ously until batteries die out. In contrast, the values of p and rc in RIS are fixed throughout

the network operation, where p is chosen to satisfy the k-coverage requirement but with no

optimization on rc. Note that, with RIS, each individual sensor’s lifetime is approximately the

same as the network’s lifetime when a sufficiently-small round duration is selected.

In the rest of this section, we study the ω-lifetime with the proposed CIS scheme and try

to find the optimal parameters to maximize the ω-lifetime of the network.
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B.4.1 ω-Lifetime Study

Suppose that n sensors are deployed independently and uniformly within a unit-area square

field D, and the network can operate M rounds following the CIS scheduling scheme. Then,

the ω-lifetime of the wireless sensor network is

Tω = E

[
M∑

i=1

T0(r
(i)
c )

]
= E




M∑

i=1

E0(
r
(i)
c

)β−1
+ η


 , (B.18)

subject to both connectivity and k-coverage requirements, and the expectation is with respect

to M . Define n
(i)
eff = n(i)p(i), which is the expected number of active sensors in round i. It is

easy to verify that the probability mass function (pmf) of M is

P (M = m) =
∑

· · ·
∑

n=n(1)>n(2)>···>n(m)n(i)>n
(i)
eff

i=1,...,m

n
(m+1)
eff −1∑

n(m+1)=0

m∏

i=1

(
n(i)

n(i+1)

)(
1 − p(i)

)n(i+1) (
p(i)
)n(i)−n(i+1)

,

Thus, the problem of maximizing the ω-lifetime of the network can be expressed as

Tmax
ω = max

r
(i)
c ,n

(i)
eff

Tω = max
r
(i)
c ,n

(i)
eff

E




M∑

i=1

E0(
r
(i)
c

)β−1
+ η


 , (B.19)

subject to Pc&c = P (A ∩B) > ω for each round. (B.20)

Using the union bound, we have

min{P (A), P (B)} > Pc&c > P (A) + P (B) − 1. (B.21)

Since it is hard to analyze Pc&c directly, we next focus on finding a lower bound and an upper

bound on the optimal ω-lifetime, Tmax
ω .

B.4.1.1 Lower bound

Restricting the constraint in (B.20) by replacing it with the lower bound in (B.21), and

assuming that all n
(i)
eff and r

(i)
c ’s are the same for each round, we can obtain a lower bound on

Tmax
ω by solving the following optimization problem:

max
neff,rc,ǫ

E[M ] · E0

rβ−1
c + η

, (B.22)
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subject to P (A) > ω + ǫ, P (B) > 1 − ǫ, 0 < ǫ < 1 − ω. (B.23)

Using the result P (A) > Pl in Theorem 8, and the following result in [40]:

P (B) ≈ 1 − P (∃ isolated active sensors) > 1 − neffe
−neffπr2

c ,

where the edge effects are avoided by the toroidal model assumption, we can restrict the

constraints in (B.23) as

Pl > ω + ǫ, rc >
√

[ln(neff/ǫ)]/(πneff), 0 < ǫ < 1 − ω. (B.24)

Notice that the value of ω is usually larger than 90% in practice, then the Pl defined in (B.6)

can be approximated as

Pl ≈ 1 − g(neff) ≡ 1 − 2n2
effa

′
se

−asneff

k−1∑

i=0

(asneff)i

i!
. (B.25)

Let Xi denote the number of active sensors in round i, then n(m) = n −∑m−1
i=1 Xi, and

conditional on n(i), Xi is Binomial-distributed as BIN
(
n(i), p(i)

)
. Next, we use the expectation

of n(i) to obtain an approximation of p(i) as

p(i) =
neff

n(i)
≈ neff

n− (i− 1)neff
=

1

M0 + 1 − i
, (B.26)

where M0 ≡ n/neff. Using (B.26) and the central limit theorem, we can approximate n(m) as

a Gaussian random variable with mean n− (m− 1)neff and variance A(m)neff, where A(m) =

∑m−1
i=1 (1 − p(i)). Then, we have

P (M 6 m) = P (n(m+1) < neff) = Q
(n− (m+ 1)neff√

A(m+ 1)neff

)
,

P (M > m) = P (n(m) > neff) = Q
( mneff − n√

A(m)neff

)
,

where Q(·) is complementary cumulative distribution function (CCDF) of Gaussian distribu-

tion. Therefore,

P (M 6 ⌊M0⌋ − 2) = Q
(n− (⌊M0⌋ − 1)neff√

A(⌊M0⌋ − 1)neff

)
6 Q

(√ neff

A(M0 − 1)

)
,
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and

P (M > ⌊M0⌋ + 2) = Q
((⌊M0⌋ + 2)neff − n√

A(⌊M0⌋ + 2)neff

)
6 Q

(√ neff

A(M0 + 1)

)
,

where the floor function ⌊x⌋ denotes the largest integer that is not greater than x. For m <

M0 + 2, A(m) can be upper-bounded as

A(m) 6 (m− 1) −
∫ M0

M0+2−m

1

x
dx = (m− 1) − ln

M0

M0+2−m
.

Then, for n and neff in the range of our interests, we have

P (M > ⌊M0⌋ + 2) 6 Q
(√ neff

A(M0+1)

)
6 Q

(√ neff

M0−lnM0

)
≈ 0.

Similarly, we have P (M 6 ⌊M0⌋ − 2) ≈ 0. Thus, the pmf of M are mostly concentrated at

3 points:
⌊

n
neff

⌋
− 1,

⌊
n

neff

⌋
, and

⌊
n

neff

⌋
+ 1. Monte Carlo simulation results also verify this

conclusion. Therefore, we have the lower bound on E[M ] as

E[M ] >
⌊n− neff

neff

⌋
. (B.27)

Since E0/(r
β−1
c + η) is a decreasing function in rc, using (B.24), (B.25) and (B.27), we obtain

a new lower bound on Tmax
ω as

TL
ω =max

neff

T1(neff) ≡ max
neff

⌊n− neff

neff

⌋
· E0(

1
πneff

ln neff
1−ω−g(neff)

)(β−1)/2
+ η

,

subject to neff > g−1(1 − ω),

where g−1(·) is the inverse function of g(neff). By temporarily removing the floor function ⌊·⌋,

we have the following convex optimization problem (given β > 3):

max
neff

E0(n− neff)

neff

(
1

πneff
ln neff

1−ω−g(neff)

)(β−1)/2
+ η · neff

,

subject to neff > g−1(1 − ω).

(B.28)

The verification of the concavity of the objective function is omitted due to space limitation.

The convex optimization problem defined in (B.28) can be solved easily by numerical

methods. Suppose that the solution of such problem is n̄eff, then

TL
ω = max{T1(n

1
eff), T1(n

2
eff)},
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where n1
eff = n

/⌊
n

n̄eff

⌋
, n2

eff = n
/⌈

n
n̄eff

⌉
, and ⌈x⌉ denotes the smallest integer that is equal to or

greater than x. We can also obtain the corresponding nL
eff and rL

c as

nL
eff = arg max

n1
eff,n2

eff

T1(neff),

rL
c =

√
[ln(nL

eff/(1 − ω − g(nL
eff)))]/(πnL

eff).

(B.29)

B.4.1.2 Upper bound

Next, we present an approximate upper bound on Tmax
ω . Relaxing the constraint in (B.20)

with the upper bound in (B.21), we obtain the relaxed constraints as

P (A) > ω, P (B) > ω. (B.30)

Then, we use the lower bounds to approximate P (A) and P (B) as

P (A) ≈ Pl ≈ 1 − g(n
(i)
eff ), P (B) ≈ 1 − n

(i)
effe

−n
(i)
effπ
(
r
(i)
c

)2
. (B.31)

Next, we assume that the number of active sensors in round i is approximately equal to

n
(i)
eff . Then the maximum number of rounds, M , is a deterministic quantity, and satisfies the

constraint
∑M

i=1 n
(i)
eff 6 n. Using (B.30) and (B.31), we obtain an approximate upper bound

on Tmax
ω by solving the following optimization problem:

max
n

(i)
eff

M∑

i=1

E0

(
1

πn
(i)
eff

ln
n

(i)
eff
ω

)(β−1)/2
+ η

,

subject to n
(i)
eff > g−1(1 − ω),

M∑

i=1

n
(i)
eff 6 n.

(B.32)

It is easy to verify that, given M , (B.32) is a convex optimization problem. By Lagrange

multiplier, we obtain a new upper bound on Tmax
ω as

TU
ω = max

neff

T2(neff) ≡ max
neff

⌊ n

neff

⌋
· E0(

1
πneff

ln neff
1−ω

)(β−1)/2
+ η

,

subject to n
(i)
eff > g−1(1 − ω).

(B.33)

Similarly, we temporarily remove the floor function ⌊·⌋. It is easy to verify that the resulting

optimization problem is a convex problem. Suppose that the solution of such problem is ñeff,
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then

TU
ω = max{T2(n

1
eff), T2(n

2
eff)},

nU
eff = arg max

n1
eff,n2

eff

T2(neff),

rU
c =

√
[ln(nU

eff/(1 − ω))]/(πnU
eff),

where n1
eff = n

/⌊
n

ñeff

⌋
and n2

eff = n
/⌈

n
ñeff

⌉
.

As an example, we let E0 = 1, β = 3.5, η = 0.001, ω = 0.92, and k = 1. Numerical results

show that the relative difference between the lower bound (TL
ω ) and the upper bound (TU

ω ) is

at the level of 10% for n from 10000 to 40000, which suggests that the derived lower bound is

a good approximation of the optimal ω-lifetime of the sensor network.

B.4.2 CIS Scheme Design

We propose to choose the operational parameters for CIS scheme according to the derived

lower bound on the optimal ω-lifetime, i.e., choosing p(i) and r
(i)
c for round i as

p(i) = min{nL
eff/n

(i), 1}, r(i)c = rL
c , (B.34)

where n(i) is the number of alive sensors at the beginning of round i (i > 1), and nL
eff and rL

c

are given in (B.29). Obviously, (B.34) provides a centralized solution, since n(i) is a global

information. At the beginning of each round, such information is required for each alive sensor

to calculate p(i) online.

In resource-constrained wireless sensor networks, we always prefer distributed solutions. In

our case, distributed solutions mean that the choices of p(i)’s should be independent of n(i).

As shown in Section B.4.1, the expected number of active sensors in each round, n(i)p(i), is the

key parameter to determine whether the network satisfies the “Pc&c > ω” requirement or not.

According to the lower bound on the optimal ω-lifetime, we define outage of round i as the

event that n(i)p(i) < nL
eff, which means that the “Pc&c > ω” requirement can not be satisfied

at round i. The probability that an outage occurs at round i is denoted by P
(i)
out. For the

centralized solution in (B.34), P
(i)
out is always 0 for the rounds that n(i) > nL

eff.
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As an approximation to (B.34), we propose a distributed solution as follows: for 1 6 i 6 M ,

p(i) =





nLeff

(
1+ǫ(i)

)

n−nLeff
∑i−1
l=1

(
1+ǫ(l)

) 1 6 i < M

1 i = M

, r(i)c = rL
c , (B.35)

where M is the maximum number of rounds, ǫ(1) = 0, and for 1 < i < M , ǫ(i)’s are chosen

such that

P
(i)
out = P (n(i)p(i) < nL

eff) = δ, (B.36)

where δ > 0 is a pre-defined small quantity.

With the choice of p(i) in (B.35), where 1 < i < M , we can approximate n(i) as a Gaussian

random variable by the central limit theorem:

n(i) ∼ N
(
n− nL

eff

i−1∑

l=1

(1 + ǫ(l)), nL
eff

i−1∑

l=1

(1 + ǫ(l))(1 − p(l))
)
.

Then, ǫ(i)’s in (B.35) can be calculated recursively according to

ǫ(i) =





0 i = 1

Q−1(δ)

a(i)−Q−1(δ)
1 < i < M

, (B.37)

and

a(i) =
n− nL

eff

∑i−1
l=1(1 + ǫ(l))√

nL
eff

∑i−1
l=1(1 + ǫ(l))(1 − p(l))

, (B.38)

where Q−1(·) is the inverse function of Q(·). The maximum number of rounds M is defined as

M = arg max
i>1

{a(i) > 0}.

The idea of this distributed solution is to use the expected number of alive sensors to replace

n(i) in (B.34), and increase the expected number of active sensors a little bit (by nL
effǫ

(i)) such

that the outage probability (P
(i)
out) can be controlled at a given level (δ). In fact, this algorithm

sacrifices the total number of rounds, equivalently network’s lifetime, to achieve the distributed

property.
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B.5 Simulation Results

In this section, we use simulation results to demonstrate the performance of the proposed

CIS scheduling schemes. The performance criterion is the ω-lifetime of the network. As a

comparison, we include the results of a CIS-like scheme that simply fixes the communication

range to be twice the mean of the sensing radius: rc = 2r0, and selects neff = nA
eff according to

(B.31). It is based on the strategy described in [121] and we call it Zhang’s scheme.

We simulate a square sensing field D of unit area in which n sensors are deployed indepen-

dently and uniformly. The sensing radius rs is assumed to be a uniformly distributed random

variable on [0.0384, 0.1216], which corresponds to r0 = 0.08 and σs = 0.3. Let E0 = 1, β = 3.5,

η = 0.001, ω = 0.92, and k = 1, i.e, we considerer 1-coverage as an example. With this network

setup, the centralized and distributed CIS schemes select p(i) and r
(i)
c according to (B.34) and

(B.35), respectively. For the distributed CIS scheme, the outage probability threshold (δ) is

set to 10−2. Zhang’s scheme selects p(i) and r
(i)
c according to (B.34) with nL

eff replaced by nA
eff.

First, we simulate the operation of a network with n = 10000 using different scheduling

schemes. We divide the field D into a grid of size 62 × 62, and approximate that the field

D is k-covered if all grid points are k-covered. For the connectivity, we approximate that

the network is connected if there is no isolated active sensors. The torus convention is also

employed for simulations to avoid edge effects. Then, Pc&c at each round of the network

operation is estimated as follows: given a deployment, the network is operated according to

the particular scheduling scheme (p(i) and rc) until the batteries of all sensors die out. Repeat

this experiment 2500 times with the same deployment. For round i of experiment j, define

δi
j = 1 if the field D is k-covered and active sensors are connected, 0 otherwise. Then, Pc&c of

round i can be estimated as P i
c&c = 1

2500

∑2500
j=1 δ

i
j .

Three snapshots of the network operation are shown in Fig. B.1, using Zhang’s scheme,

centralized and distributed CIS scheduling schemes, respectively. It is seen that all scheduling

schemes can guarantee that the network satisfies the connectivity and k-coverage requirements

as long as the expected number of active sensors is no less than nL
eff. Therefore, in the simulation

of the network’s ω-lifetime, we only need to simulate how many rounds a network can operate
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Figure B.1 Three snapshots of the network operation.

properly following a particular scheduling scheme. Notice that Zhang’s scheme can operate

more rounds than the CIS schemes. However, each round is shorter in Zhang’s scheme, since

rc is not optimally selected. As seen in the next simulation, the CIS schemes have longer

ω-lifetime than Zhang’s scheme.
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Figure B.2 ω-lifetime with different scheduling schemes.

Second, we compare the ω-lifetime of a network using different scheduling schemes with n

from 10000 to 40000, and the results are plotted in Fig. B.2. The derived lower bound and

upper bound for the CIS scheme are also shown in the figure. The estimate of the ω-lifetime
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is calculated as:

T̂net =
1

N

N∑

i=1

Mi · T0(rc), (B.39)

where N is the number of Monte Carlo realizations, T0(rc) is the duration of each round defined

in (B.17), and

Mi = arg min
i>1

{
n(i)p(i) < nL

eff

}
. (B.40)

We observe that for the centralized CIS scheme, the simulation result is very close to the

theoretical lower bound, TL
ω , which was derived in Section B.4. By comparing the CIS schemes

and Zhang’s scheme, we clearly see that the ω-lifetime’s of both centralized and distributed

CIS schemes are much longer than that of Zhang’s scheme, and the differences become larger

with more deployed sensors. Such fact demonstrates the importance of joint optimization of

lifetime, connectivity, and coverage. We also see that the ω-lifetime of the distributed CIS

scheme is close to that of the centralized one, which suggests that the distributed CIS scheme

is a good choice for real applications.

B.6 Summary

In this work, we investigate the fundamental limits of a wireless sensor network’s lifetime

under connectivity and k-coverage constraints. The contributions of our work are threefold.

First, we derive the sufficient and necessary condition on the sensing radius for asymptotic k-

coverage of the sensing field. Second, we study the lifetime of a wireless sensor network from a

(new) probabilistic perspective and introduce a new concept, called network’s ω-lifetime, which

is defined as the expectation of the time interval during which the probability of guaranteeing

connectivity and k-coverage simultaneously is at least ω. Third, we propose CIS (Coordinated

Independent Sleeping) as a near-optimal scheduling scheme to maximize the ω-lifetime of a

finite-size wireless sensor network, describe a possible distributed implementation of the CIS

scheme, and demonstrate the CIS performance by simulation results.

Future work includes extending the analysis to more generic and realistic scenarios such as

when only a portion of the sensing field needs to be k-covered, or when the sensing field is of

irregular shape, or when the communication radius is also a random variable.
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